Mapping schemes realizable by obstructed topological polynomials
HTML articles powered by AMS MathViewer
- by Gregory A. Kelsey PDF
- Conform. Geom. Dyn. 16 (2012), 44-80 Request permission
Abstract:
In 1985, Levy used a theorem of Berstein to prove that all hyperbolic topological polynomials are equivalent to complex polynomials. We prove a partial converse to the Berstein-Levy Theorem: given post-critical dynamics that are in a sense strongly non-hyperbolic, we prove the existence of topological polynomials which are not equivalent to any complex polynomial that realize these post-critical dynamics. This proof employs the theory of self-similar groups to demonstrate that a topological polynomial admits an obstruction and produces a wealth of examples of obstructed topological polynomials.References
- L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 5–45; English transl., Proc. Steklov Inst. Math. 4(231) (2000), 1–41. MR 1841750
- Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Acta Math. 197 (2006), no. 1, 1–51. MR 2285317, DOI 10.1007/s11511-006-0007-3
- Laurent Bartholdi and Bálint Virág, Amenability via random walks, Duke Math. J. 130 (2005), no. 1, 39–56. MR 2176547, DOI 10.1215/S0012-7094-05-13012-5
- Claude Berge, Graphs and hypergraphs, North-Holland Mathematical Library, Vol. 6, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Translated from the French by Edward Minieka. MR 0357172
- Ben Bielefeld, Yuval Fisher, and John Hubbard, The classification of critically preperiodic polynomials as dynamical systems, J. Amer. Math. Soc. 5 (1992), no. 4, 721–762. MR 1149891, DOI 10.1090/S0894-0347-1992-1149891-3
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI 10.1007/s00222-002-0233-z
- Mario Bonk and Daniel Meyer, Expanding Thurston maps. arXiv:1009.3647.
- Eva Brezin, Rosemary Byrne, Joshua Levy, Kevin Pilgrim, and Kelly Plummer, A census of rational maps, Conform. Geom. Dyn. 4 (2000), 35–74. MR 1749249, DOI 10.1090/S1088-4173-00-00050-3
- Henk Bruin and Dierk Schleicher, “Symbolic dynamics of quadratic polynomials”. Institut Mittag-Leffler, Report No. 7, 2001/2002.
- Kai-Uwe Bux and Rodrigo Pérez, On the growth of iterated monodromy groups, Topological and asymptotic aspects of group theory, Contemp. Math., vol. 394, Amer. Math. Soc., Providence, RI, 2006, pp. 61–76. MR 2216706, DOI 10.1090/conm/394/07434
- Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
- Jacek Fabrykowski and Narain Gupta, On groups with sub-exponential growth functions. II, J. Indian Math. Soc. (N.S.) 56 (1991), no. 1-4, 217–228. MR 1153150
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787, DOI 10.24033/bsmf.998
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33–94 (French). MR 1504792, DOI 10.24033/bsmf.1003
- R. I. Grigorčuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 53–54 (Russian). MR 565099
- R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985 (Russian). MR 764305
- Rostislav I. Grigorchuk and Andrzej Żuk, On a torsion-free weakly branch group defined by a three state automaton, Internat. J. Algebra Comput. 12 (2002), no. 1-2, 223–246. International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000). MR 1902367, DOI 10.1142/S0218196702001000
- Rostislav I. Grigorchuk and Andrzej Żuk, Spectral properties of a torsion-free weakly branch group defined by a three state automaton, Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001) Contemp. Math., vol. 298, Amer. Math. Soc., Providence, RI, 2002, pp. 57–82. MR 1929716, DOI 10.1090/conm/298/05114
- Peter Haïssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics, Astérisque 325 (2009), viii+139 pp. (2010) (English, with English and French summaries). MR 2662902
- Gaston Julia, Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1918), 47-245.
- Atsushi Kameyama, The Thurston equivalence for postcritically finite branched coverings, Osaka J. Math. 38 (2001), no. 3, 565–610. MR 1860841
- Sarah Koch, Teichmüller Theory and Endomorphisms of $\mathbb {P}^n$. Ph.D. thesis, Université de Provence, 2007.
- Sarah Koch. Private communication, 7 August, 2009.
- Silvio Levy, Critically Finite Rational Maps. Ph.D. thesis, Princeton University, 1985.
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- Curt McMullen, Rational maps and Kleinian groups, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 889–899. MR 1159274
- Curtis T. McMullen, The classification of conformal dynamical systems, Current developments in mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 323–360. MR 1474980
- Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164, DOI 10.1090/surv/117
- Volodymyr Nekrashevych, Combinatorics of polynomial iterations, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 169–214. MR 2508257, DOI 10.1201/b10617-5
- Kevin M. Pilgrim, Dessins d’enfants and Hubbard trees, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 671–693 (English, with English and French summaries). MR 1834499, DOI 10.1016/S0012-9593(00)01050-8
- Kevin M. Pilgrim, Canonical Thurston obstructions, Adv. Math. 158 (2001), no. 2, 154–168. MR 1822682, DOI 10.1006/aima.2000.1971
- Kevin M. Pilgrim, Combinations of complex dynamical systems, Lecture Notes in Mathematics, vol. 1827, Springer-Verlag, Berlin, 2003. MR 2020454, DOI 10.1007/b14147
- Kevin M. Pilgrim, An algebraic formulation of Thurston’s combinatorial equivalence, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3527–3534. MR 1991765, DOI 10.1090/S0002-9939-03-07035-7
- Alfredo Poirier, Critical portraits for postcritically finite polynomials, Fund. Math. 203 (2009), no. 2, 107–163. MR 2496235, DOI 10.4064/fm203-2-2
- Mary Rees, Realization of matings of polynomials as rational maps of degree $2$. 1986.
- Nikita Selinger, Thurston’s pullback map on the augmented Teichmüller space and applications. arXiv:1010.1690.
- Mitsuhiro Shishikura, On a theorem of M. Rees for matings of polynomials, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 289–305. MR 1765095
- Lei Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 589–620. MR 1182664, DOI 10.1017/S0143385700006957
Additional Information
- Gregory A. Kelsey
- Affiliation: Department of Mathematics, Computing Sciences, and Physics, Immaculata University, P.O. Box 648, Immaculata, Pennsylvania 19345
- Email: gkelsey@immaculata.edu
- Received by editor(s): January 27, 2011
- Received by editor(s) in revised form: July 26, 2011
- Published electronically: March 13, 2012
- Additional Notes: The author acknowledges support from National Science Foundation grant DMS 08-38434 “EMSW21-MCTP: Research Experience for Graduate Students”.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 16 (2012), 44-80
- MSC (2010): Primary 37F20; Secondary 20F65
- DOI: https://doi.org/10.1090/S1088-4173-2012-00239-1
- MathSciNet review: 2893472