Some spectral applications of McMullen’s Hausdorff dimension algorithm
HTML articles powered by AMS MathViewer
- by K. Gittins, N. Peyerimhoff, M. Stoiciu and D. Wirosoetisno
- Conform. Geom. Dyn. 16 (2012), 184-203
- DOI: https://doi.org/10.1090/S1088-4173-2012-00244-5
- Published electronically: July 25, 2012
- PDF | Request permission
Abstract:
Using McMullen’s Hausdorff dimension algorithm, we study numerically the dimension of the limit set of groups generated by reflections along three geodesics on the hyperbolic plane. Varying these geodesics, we found four minima in the two-dimensional parameter space, leading to a rigorous result why this must be so. Extending the algorithm to compute the limit measure and its moments, we study orthogonal polynomials on the unit circle associated with this measure. Several numerical observations on certain coefficients related to these moments and on the zeros of the polynomials are discussed.References
- Arthur Baragar, Fractals and the base eigenvalue of the Laplacian on certain noncompact surfaces, Experiment. Math. 15 (2006), no. 1, 33–42. MR 2229383, DOI 10.1080/10586458.2006.10128950
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- David Borthwick, Spectral theory of infinite-area hyperbolic surfaces, Progress in Mathematics, vol. 256, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2344504, DOI 10.1007/978-0-8176-4653-0
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1992 edition. MR 2742784, DOI 10.1007/978-0-8176-4992-0
- M. J. Cantero, L. Moral, and L. Velázquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl. 362 (2003), 29–56. MR 1955452, DOI 10.1016/S0024-3795(02)00457-3
- K. Gittins, N. Peyerimhoff, M. Stoiciu, and D. Wirosoetisno, some codes for the computations in this article are filed as ancillary files of arXiv:1112.1020.
- Oliver Jenkinson and Mark Pollicott, Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets, Amer. J. Math. 124 (2002), no. 3, 495–545. MR 1902887, DOI 10.1353/ajm.2002.0015
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI 10.1016/0022-1236(82)90050-7
- Peter D. Lax and Ralph S. Phillips, Translation representation for automorphic solutions of the wave equation in non-Euclidean spaces. I, Comm. Pure Appl. Math. 37 (1984), no. 3, 303–328. MR 739923, DOI 10.1002/cpa.3160370304
- Peter D. Lax and Ralph S. Phillips, Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces. II, Comm. Pure Appl. Math. 37 (1984), no. 6, 779–813. MR 762873, DOI 10.1002/cpa.3160370604
- Peter D. Lax and Ralph S. Phillips, Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces. III, Comm. Pure Appl. Math. 38 (1985), no. 2, 179–207. MR 780072, DOI 10.1002/cpa.3160380205
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math. 120 (1998), no. 4, 691–721. MR 1637951, DOI 10.1353/ajm.1998.0031
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups, J. Differential Geom. 51 (1999), no. 3, 471–515. MR 1726737
- Peter J. Nicholls, A measure on the limit set of a discrete group, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 259–297. MR 1130179
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- S. J. Patterson, On a lattice-point problem in hyperbolic space and related questions in spectral theory, Ark. Mat. 26 (1988), no. 1, 167–172. MR 948288, DOI 10.1007/BF02386116
- R. S. Phillips and P. Sarnak, The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math. 155 (1985), no. 3-4, 173–241. MR 806414, DOI 10.1007/BF02392542
- Barry Simon, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR 2105088, DOI 10.1090/coll054.1
- Barry Simon, Orthogonal polynomials on the unit circle. Part 2, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Spectral theory. MR 2105089, DOI 10.1090/coll/054.2/01
- Barry Simon, OPUC on one foot, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 4, 431–460. MR 2163705, DOI 10.1090/S0273-0979-05-01075-X
- Barry Simon, CMV matrices: five years after, J. Comput. Appl. Math. 208 (2007), no. 1, 120–154. MR 2347741, DOI 10.1016/j.cam.2006.10.033
- Barry Simon, Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle, J. Math. Anal. Appl. 329 (2007), no. 1, 376–382. MR 2306808, DOI 10.1016/j.jmaa.2006.06.076
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586, DOI 10.1007/BF02684773
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265, DOI 10.1007/BF02392379
- Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327–351. MR 882827
Bibliographic Information
- K. Gittins
- Affiliation: Mathematical Sciences, Durham University, Mountjoy Site, South Road, Durham DH1 3LE, United Kingdom
- Email: katie.gittins@durham.ac.uk
- N. Peyerimhoff
- Affiliation: Mathematical Sciences, Durham University, Mountjoy Site, South Road, Durham DH1 3LE, United Kingdom
- MR Author ID: 290247
- Email: norbert.peyerimhoff@durham.ac.uk
- M. Stoiciu
- Affiliation: Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts 01267
- Email: mstoiciu@williams.edu
- D. Wirosoetisno
- Affiliation: Mathematical Sciences, Durham University, Mountjoy Site, South Road, Durham DH1 3LE, United Kingdom
- Email: djoko.wirosoetisno@durham.ac.uk
- Received by editor(s): January 13, 2012
- Published electronically: July 25, 2012
- Additional Notes: The first author was supported by a Nuffield Undergraduate Research Bursary.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 16 (2012), 184-203
- MSC (2010): Primary 37F35; Secondary 37F30, 42C05, 51M10, 58J50
- DOI: https://doi.org/10.1090/S1088-4173-2012-00244-5
- MathSciNet review: 2950130