The space-like surfaces with vanishing conformal form in the conformal space
HTML articles powered by AMS MathViewer
- by Changxiong Nie PDF
- Conform. Geom. Dyn. 16 (2012), 204-208 Request permission
Abstract:
The conformal geometry of surfaces in the conformal space $\mathbf {Q}^n_1$ is studied. We classify the space-like surfaces in $\mathbf {Q}^n_1$ with vanishing conformal form up to conformal equivalence.References
- Changping Wang, Moebius geometry of submanifolds in $S^n$, Manuscripta Math. 96 (1998), no. 4, 517–534. MR 1639852, DOI 10.1007/s002290050080
- Hai Zhong Li and Chang Ping Wang, Surfaces with vanishing Moebius form in $S^n$, Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 4, 671–678. MR 2023361, DOI 10.1007/s10114-003-0309-8
- Robert L. Bryant, Minimal surfaces of constant curvature in $S^n$, Trans. Amer. Math. Soc. 290 (1985), no. 1, 259–271. MR 787964, DOI 10.1090/S0002-9947-1985-0787964-8
- Deng, Y.J., Wang, C.P., Willmore surfaces in Lorentzian space, Sci. China Ser. A 35 (2005), 1361–1372.
- Changxiong Nie, Xiang Ma, and Changping Wang, Conformal CMC-surfaces in Lorentzian space forms, Chinese Ann. Math. Ser. B 28 (2007), no. 3, 299–310. MR 2339435, DOI 10.1007/s11401-006-0041-7
- L. J. Alías and B. Palmer, Conformal geometry of surfaces in Lorentzian space forms, Geom. Dedicata 60 (1996), no. 3, 301–315. MR 1384435, DOI 10.1007/BF00147367
- ChangXiong Nie, TongZhu Li, YiJun He, and ChuanXi Wu, Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space, Sci. China Math. 53 (2010), no. 4, 953–965. MR 2640180, DOI 10.1007/s11425-009-0206-4
- Blaschke, W., Vorlesungen über Differentialgeometrie, Vol. 3, Springer, Berlin, 1929.
- Udo Hertrich-Jeromin, Introduction to Möbius differential geometry, London Mathematical Society Lecture Note Series, vol. 300, Cambridge University Press, Cambridge, 2003. MR 2004958, DOI 10.1017/CBO9780511546693
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
Additional Information
- Changxiong Nie
- Affiliation: Faculty of Mathematics and Computer Sciences, Hubei University, Wuhan 430062, People’s Republic of China
- Email: chxnie@163.com
- Received by editor(s): July 29, 2011
- Published electronically: August 15, 2012
- Additional Notes: This work was partially supported by National Natural Science Foundation of China (Grant Nos. 10971055 and 10801006) and Zhongdian Natural Science Foundation of Hubei Educational Committee
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 16 (2012), 204-208
- MSC (2010): Primary 53A30, 53C50
- DOI: https://doi.org/10.1090/S1088-4173-2012-00247-0
- MathSciNet review: 2958931