Quasi-isometric co-Hopficity of non-uniform lattices in rank-one semi-simple Lie groups
HTML articles powered by AMS MathViewer
- by Ilya Kapovich and Anton Lukyanenko
- Conform. Geom. Dyn. 16 (2012), 269-282
- DOI: https://doi.org/10.1090/S1088-4173-2012-00246-9
- Published electronically: October 15, 2012
- PDF | Request permission
Abstract:
We prove that if $G$ is a non-uniform lattice in a rank-one semi-simple Lie group $\ne \text {Isom}( \mathbb {H}^2_{\mathbb {R}})$, then $G$ is quasi-isometrically co-Hopf. This means that every quasi-isometric embedding $G\to G$ is coarsely surjective and thus is a quasi-isometry.References
- Igor Belegradek, On co-Hopfian nilpotent groups, Bull. London Math. Soc. 35 (2003), no. 6, 805–811. MR 2000027, DOI 10.1112/S0024609303002480
- Igor Belegradek and Andrzej Szczepański, Endomorphisms of relatively hyperbolic groups, Internat. J. Algebra Comput. 18 (2008), no. 1, 97–110. With an appendix by Oleg V. Belegradek. MR 2394723, DOI 10.1142/S0218196708004305
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- Marc Bourdon and Hervé Pajot, Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2315–2324. MR 1610912, DOI 10.1090/S0002-9939-99-04901-1
- M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), no. 2, 245–268 (French, with English and French summaries). MR 1445387, DOI 10.1007/PL00001619
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Martin R. Bridson, Daniel Groves, Jonathan A. Hillman, and Gaven J. Martin, Cofinitely Hopfian groups, open mappings and knot complements, Groups Geom. Dyn. 4 (2010), no. 4, 693–707. MR 2727659, DOI 10.4171/GGD/101
- Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR 1786869
- T. Delzant and L. Potyagailo, Endomorphisms of Kleinian groups, Geom. Funct. Anal. 13 (2003), no. 2, 396–436. MR 1982149, DOI 10.1007/s000390300010
- David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. MR 1161694, DOI 10.1201/9781439865699
- Alex Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998), no. 2, 321–361. MR 1475886, DOI 10.1090/S0894-0347-98-00256-2
- Benson Farb and Lee Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, Invent. Math. 131 (1998), no. 2, 419–451. With an appendix by Daryl Cooper. MR 1608595, DOI 10.1007/s002220050210
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Michael Kapovich and Bruce Kleiner, Coarse Alexander duality and duality groups, J. Differential Geom. 69 (2005), no. 2, 279–352. MR 2168506
- Sergei Merenkov, A Sierpiński carpet with the co-Hopfian property, Invent. Math. 180 (2010), no. 2, 361–388. MR 2609245, DOI 10.1007/s00222-010-0231-5
- Richard Evan Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 133–168 (1996). MR 1383215, DOI 10.1007/BF02698639
- Z. Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank $1$ Lie groups. II, Geom. Funct. Anal. 7 (1997), no. 3, 561–593. MR 1466338, DOI 10.1007/s000390050019
- Z. Sela, Endomorphisms of hyperbolic groups. I. The Hopf property, Topology 38 (1999), no. 2, 301–321. MR 1660337, DOI 10.1016/S0040-9383(98)00015-9
Bibliographic Information
- Ilya Kapovich
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- Email: kapovich@math.uiuc.edu
- Anton Lukyanenko
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- Email: anton@lukyanenko.net
- Received by editor(s): April 17, 2012
- Published electronically: October 15, 2012
- Additional Notes: The first author was supported by the NSF grant DMS-0904200.
The authors acknowledge support from the National Science Foundation grant DMS-1107452 “RNMS: Geometric structures and representation varieties”. - © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 16 (2012), 269-282
- MSC (2010): Primary 20F65; Secondary 53C23
- DOI: https://doi.org/10.1090/S1088-4173-2012-00246-9
- MathSciNet review: 2983835