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CANONICAL THURSTON OBSTRUCTIONS

FOR SUB-HYPERBOLIC SEMI-RATIONAL

BRANCHED COVERINGS

TAO CHEN AND YUNPING JIANG

Abstract. We prove that the canonical Thurston obstruction for a sub-hyper-
bolic semi-rational branched covering exists if the branched covering is not
CLH-equivalent to a rational map.

1. Introduction

Let S2 be the two-sphere. We use Ĉ to denote the Riemann sphere which is
S2 equipped with the standard complex structure. All maps in this paper are
orientation-preserving.

Let f : S2 → S2 be a branched covering of degree d ≥ 2. Let

Cf = {x ∈ S2 | degx f ≥ 2}
denote the set of the critical points of f and

Pf =
⋃
k≥1

fk(Cf )

denote the post-critical set of f .
We say f is critically finite if �Pf is finite. We say f is geometrically finite if �Pf

is infinite but the accumulation set P ′
f of Pf is a finite set.

Definition 1. Suppose f, g : S2 → S2 are two branched coverings of degree d ≥ 2.
They are said to be combinatorially equivalent if there exists a pair of homeomor-
phisms φ, ϕ : S2 → S2 such that

(a) φ is isotopic to ϕ rel Pf and
(b) φ ◦ f = g ◦ ϕ.

Note that in (a) of Definition 1, the statement that φ is isotopic to ϕ rel Pf

means that there is a continuous map H(x, t) : S2 × [0, 1] → S2 such that

(1) for each t ∈ [0, 1], Ht(x) = H(x, t) : S2 → S2 is a homeomorphism;
(2) H0 = φ and H1 = ϕ;
(3) for any point y ∈ Pf and any t ∈ [0, 1], Ht(y) = φ(y) = ϕ(y).
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Suppose f : S2 → S2 is critically finite. Then there is an orbifold structure on
S2 associated to f as follows. Define the signature νf : S2 → Z+ ∪ {∞} as that
νf (x) is the least common multiple of local degrees degy f

n over y ∈ f−n(x) for all

n ≥ 1. The orbifold associated to f is Ωf = (S2, νf ). The Euler characteristic of
Ωf , by definition, is

χ(Ωf ) = 2− Σx∈S2

(
1− 1

νf (x)

)
.

It is known that χ(Ωf ) ≤ 0 (see Proposition 9.1(i) in [DH]). Moreover, the orbifold
Ωf is called hyperbolic if χ(Ωf ) < 0 and parabolic if χ(Ωf ) = 0.

Theorem A (see [Th,DH]). Suppose f is a critically finite branched covering with
a hyperbolic orbifold Ωf . Then f is combinatorially equivalent to a rational map
R if and only if f has no Thurston obstructions. Moreover, the rational map R is
unique up to conjugations by automorphisms of the Riemann sphere.

The reader can refer to §2 for the definition of a Thurston obstruction. If a
critically finite branched covering f is not equivalent to a rational map, then there
must exist Thurston obstructions. The canonical Thurston obstruction is the most
interesting one among all Thurston obstructions. The reader can refer to §2 for the
term non-peripheral and §4 for the definition of l(γ, x).

Theorem B (see [Pi]). Suppose f is a critically finite branched covering with a
hyperbolic orbifold Ωf , and let Γc denote the set of all homotopy class of non-
peripheral curves γ in S2 \ Pf such that l(γ, xn) → 0 as n → ∞. Then

(1) Γc is empty, and f is combinatorially equivalent to a rational map;
(2) otherwise, Γc is a Thurston obstruction and hence is a canonically defined

Thurston obstruction to the existence of a rational map.

The non-existence of Thurston’s obstruction condition is essentially true for any
rational map.

Theorem C (see [Mc]). Suppose R : Ĉ → Ĉ is a rational map. Let Γ be a multi-

curve on Ĉ− PR. It can be a Thurston obstruction only in the following cases:

(1) R is critically finite with #PR = 4 and the orbifold ΩR = (S2, (2, 2, 2, 2)) is
parabolic. Moreover, R is a double covered by an integral torus endomor-
phism (it is a special case of a Lattés map).

(2) PR is an infinite set and Γ includes the essential curves in a finite system
of annuli permuted by R. These annuli lie in Siegel disks or Herman rings

for R and each annulus is a connected component of Ĉ− PR.

The reader can refer to [Mi] for a definition of a Lattés map and for definitions
of a Siegel disk and a Herman ring.

For a geometrically finite branched covering f , the situation is much more com-
plicated. It was first studied in a manuscript [CJS], which was divided into two
parts [CJS1] and [CJS2]. The first part was eventually completed and published
in [CJ] as follows.

Theorem D (see [CJ]). There is a geometrically finite branched covering such
that it has no Thurston obstruction and it is not combinatorially equivalent to any
rational map.
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Due to this theorem, a semi-rational branched covering and a sub-hyperbolic
semi-rational branched covering are introduced in [CJ] among the space of all geo-
metrically finite branched coverings.

Definition 2. Suppose f : Ĉ → Ĉ is a geometrically finite branched covering of
degree d ≥ 2. We say f is semi-rational if

(1) f is holomorphic in a neighborhood of P ′
f ;

(2) each cycle 〈p0, · · · , pk−1〉 of period k ≥ 1 in P ′
f is either attractive, that is,

0 < |(fk)′(p0)| < 1, or super-attractive, that is, (fk)′(p0) = 0, or parabolic,

that is, |(fk)′(p0)| = 1 and
(
(fk)′(p0)

)q
= 1 for some integer q ≥ 1; and

(3) each attracting petal associated with a parabolic cycle in P ′
f contains a

point in the post-critical set Pf .

Furthermore, if all cycles in P ′
f are either attractive or super-attractive, we call f

a sub-hyperbolic semi-rational branched covering.

Clearly, every geometrically finite rational map is a semi-rational branched cov-
ering. Furthermore, we have the following theorem.

Theorem E (see [CJ]). A semi-rational branched covering f is always combinato-
rially equivalent to a sub-hyperbolic semi-rational branched covering g.

Thus, to study the combinatorial classification in the space of all semi-rational
geometrically finite branched coverings, it is enough to study all sub-hyperbolic
semi-rational branched coverings. Therefore, the CLH (combinatorially and lo-
cally holomorphically) equivalence was introduced in [CJ] in the space of all sub-
hyperbolic semi-rational branched coverings.

Definition 3. Suppose f and g are two sub-hyperbolic semi-rational branched
coverings. We say that they are CLH-equivalent if there exists a pair of homeomor-

phisms φ, ϕ : Ĉ → Ĉ such that:

(1) φ is isotopic to ϕ rel Pf ;
(2) φ ◦ f = g ◦ ϕ, and
(3) φ|Uf = ϕ|Uf is holomorphic on some open set Uf ⊃ P ′

f .

We have then completed the second part of the study.

Theorem F (see [CJS2]1, [JZ]). Suppose f is a sub-hyperbolic semi-rational
branched covering. Then f is CLH-equivalent to a rational map R if and only
if f has no Thurston obstructions. In this case, the rational map R is unique up to
conjugations by automorphisms of the Riemann sphere.

Thus, the study of canonical Thurston obstructions for sub-hyperbolic semi-
rational branched coverings becomes our final goal, to have a complete understand-
ing of combinatorial structures for geometrically finite branched coverings. In this
paper we will complete our final goal.

For the critically finite case, the Teichmüller space of the Riemann sphere minus
several points was considered in [DH]. They proved a crucial technical result that
a sequence {xn} in the Teichmüller space converges if and only if its projection is a
precompact set in the moduli space. The Mumford compactness theorem applies.
But neither of them applies for the geometrically finite case. Therefore, we turn

1This paper was rewritten by Cui and Tan recently [CT].
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to study the bounded geometry property (refer to [Ji]), which makes our approach
different from the method applied in [DH]. Roughly speaking, our main result in
this paper is that if a sub-hyperbolic semi-rational branched covering f is not CLH-
equivalent to any rational map, then there exists a canonical Thurston obstruction.
To have a more precise statement of our main result, let us first give an idea of a
proof of Theorem F by using bounded geometry as follows.

Suppose f is a sub-hyperbolic semi-rational branched covering. Let P ′
f = {ai}

be the set of accumulation points of Pf . Then every ai is periodic. There exists a
collection of a finite number of open disks

(1) Λ = {Di}
centered at {ai} and a collection of a finite number of annuli {Ai} (we call them
the shielding rings) such that:

(i) Ai ∩ Pf = ∅;
(ii) Ai ∩Di = ∅, but one component of ∂Ai is the boundary of Di;
(iii) (Di ∪ Ai) ∩ (Dj ∪Aj) = ∅ for i �= j;

(iv) f is holomorphic on Di ∪ Ai, and
(v) every f(Di ∪Ai) is contained in Di+1 for 1 ≤ i ≤ k − 1 and f(Dk ∪Ak) is

contained in D1 where k is the period of ai.

Denote D =
⋃

i Di and

(2) P1 = Pf \D.

Since ai are accumulation points of Pf , it follows that �P1 is finite. Without loss
of generality, we assume that 0, 1, and ∞ belong to P1. Define

(3) Q = P1 ∪D and X = ∂Q = P1 ∪ ∂D.

We associate with f the Teichmüller space Tf = T (Ĉ \ Q,X) which is the

Teichmüller space of the Riemann surface Ĉ \Q whose boundary is X. Note that
Tf is also the Teichmüller space T0(Q) which is the space of all Q-equivalent classes

of all Beltrami coefficients μ on Ĉ such that μ|Q = 0. (Two Beltrami coefficients μ
and ν are Q-equivalent if the normalized quasiconformal maps wμ and wν are iso-
topic rel Q.) The space Tf is a complex manifold. The Teichmüller metric and the
Kobayashi metric on Tf are also equal (refer to, for example, [EM,GJW,JMW]).

The map f induces a holomorphic map σf from Tf into itself and σf weakly
contracts the Teichmüller metric. An equivalent statement of Theorem F is that
σf has a unique fixed point if and only if f has no Thurston obstruction.

Every point x in Tf determines a complex structure on Ĉ \ Q up to homotopy.

Then (Ĉ \Q, x) is a Riemann surface Rx. We embed Rx into the Riemann sphere

Ĉ by a quasiconformal map φx : Ĉ → Ĉ fixing 0, 1, ∞. Then Ĉ \ φx(Q) is a
representative of Rx. The reader can refer to §4.

Let d(·, ·) mean the spherical distance on Ĉ. We define a subspace Tf,b of Tf for
each b > 0 as follows.

Definition 4. Let b > 0 be a constant. Let Tf,b be the subspace of x = [μ] ∈ Tf
satisfying the following conditions:

(1) for all zi �= zi′ ∈ P1, d(φμ(zi), φμ(zi′)) ≥ b;
(2) for all zj ∈ P1 and all Di ∈ Λ, d(φμ(zj), φμ(Di)) ≥ b;
(3) for all Di �= Di′ ∈ Λ, d(φμ(Di), φμ(Di′)) ≥ b;
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(4) every Di ∈ Λ, φμ(Di) contains a round disk of radius b centered at φμ(ci).

We call Tf,b the subspace having the bounded geometry property determined by b.

Take an arbitrary x0 ∈ Tf and let xn = σn
f (x). If f has no Thurston obstructions,

we can prove that {xn}∞n=0 ⊂ Tf,b for some b > 0. This implies that the sequence
{xn}∞n=0 converges in Tf . Thus σf has a unique fixed point, and f is CLH-equivalent
to a unique sub-hyperbolic rational map.

For a non-peripheral curve γ in Ĉ \Q, let l(γ, x) denote the hyperbolic length of

the unique geodesic in Rx which is homotopic to γ in Ĉ\Q. If {xn} ⊂ Tf,b for some
b > 0, then there is a δ > 0 such that l(γ, xn) ≥ δ for any non-peripheral curve γ

in Ĉ \Q and any n ≥ 0. Therefore, if f is not CLH-equivalent to a sub-hyperbolic

rational map, then there is a sequence of non-peripheral curves γn in Ĉ \ Q such
that l(γn, xn) → 0 as n → ∞.

Question. Suppose f is not CLH-equivalent to a rational map. Does there exist
a non-peripheral curve γ, such that for any x0 ∈ Tf and xn = σn

f (x0), n > 0,

l(γ, xn) → 0 as n → ∞?

We give an affirmative answer to this question. The positive answer to this
question shows how xn tends to the boundary of Tf . More precisely, we will prove
a stronger result as follows.

Theorem 1 (Main Theorem). Suppose f is a sub-hyperbolic semi-rational branched
covering. Let Γc denote the set of all homotopy classes of non-peripheral curves γ

in Ĉ \Q such that l(γ, xn) → 0 as n → ∞ for any initial x0 ∈ Tf = T0(Q). Then
we have that either

(a) Γc = ∅, then f is CLH-equivalent to a sub-hyperbolic rational map, or
(b) Γc �= ∅ is a Thurston obstruction for f and f is not CLH-equivalent to a

rational map. In this case, we call Γc the canonical Thurston obstruction
for f .

The paper is organized as follows. In §2, we define Thurston obstructions for sub-
hyperbolic semi-rational branched coverings. In §3, we review non-negative matrices
and study some properties for irreducible non-negative matrices. In §4, we study the
Teichmüller space associated with a sub-hyperbolic semi-rational branched covering
and short geodesics. For any Thurston obstruction Γ, we can decompose it into
Γ0 and Γ∞ (see Definition 7). We estimate the upper bound for Γ∞ in §5 and the
lower bound for Γ0 in §6. Finally, we prove Theorem 1 in §7.

2. Thurston obstructions

Suppose f is a sub-hyperbolic semi-rational branched covering. Let Q be the set
as we defined in (3). Then

f : Ĉ \ f−1(Q) −→ Ĉ \Q
is a covering map of finite degree. If γ is a simple closed curve in Ĉ \ Q, then all

the components of f−1(γ) are simple closed curves in Ĉ\f−1(Q), which is a subset

of Ĉ \Q. Thus all the components of f−1(γ) are simple closed curves in Ĉ \Q.

A simple closed curve γ is said to be non-peripheral if each component of Ĉ \ γ
contains at least two points of Q. A multi-curve

(4) Γ = {γ1, · · · , γn}
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is a set of finitely many pairwise disjoint, non-homotopic, and non-peripheral curves

in Ĉ \Q. For each multi-curve Γ in (4), let

R
Γ = 〈γ1, · · · , γn〉

be the real vector space of dimension n with a basis Γ. We define a linear transfor-
mation

fΓ : RΓ → R
Γ

as follows: For each γj ∈ Γ, let γi,j,α denote the components of f−1(γj) homotopic

to γi in Ĉ \Q and di,j,α be the degree of f |γi,j,α
: γi,j,α → γj . Define

fΓ(γj) = Σi

(
Σα

1

di,j,α

)
γi.

Let AΓ be the corresponding matrix, that is

fΓv = AΓv, v ∈ R
Γ.

Since the matrix AΓ is non-negative, by the Perron-Frobenius Theorem, there exists
a maximal non-negative eigenvalue λ(AΓ) which is the spectral radius of AΓ.

A multi-curve Γ is said to be f -stable if for any γ ∈ Γ, every non-peripheral
component of f−1(γ) is homotopic to an element of Γ rel Q.

Definition 5. A stable multi-curve Γ is called a Thurston obstruction for f if
λ(AΓ) ≥ 1.

Remark 1. The definition of a Thurston obstruction for the critically finite case is
similar by replacing Q by Pf .

3. Non-negative matrices

Since a Thurston obstruction is determined by a non-negative matrix, we give a
brief review of some results in the matrix theory about non-negative matrices. We
use [Ga] as a reference.

A non-negative n × n matrix A is called irreducible, if no permutation of the
indices places the matrix in a block lower-triangular form. More precisely, there is
no permutation matrix P , which is a matrix consisting of 0 and 1 such that each
row or each column contains one and only one 1, such that

PAP−1 =

(
A11 0
A21 A22

)
,

where A11 and A22 are square matrices. An equivalent definition of irreducibility
is that for any 1 ≤ i, j ≤ n, there exists a 0 ≤ q = q(i, j) ≤ n such that the ij-th
entry of Aq is positive.

For the n-dimensional vector space V , we will use the norm

(5) ‖v‖ = max
1≤i≤n

|vi|, v = (v1, · · · , vn) ∈ V

in the rest of this paper. For any linear map L : V → V , let A be the corresponding
matrix for L; define

‖A‖ = sup
‖v‖=1

‖Av‖.

The spectral radius λ(A) of A can be calculated as

λ(A) = lim
n→∞

n
√
||An|| ≥ 0.
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If A is a non-negative, the Perron-Frobenius Theorem implies that λ(A) is an
eigenvalue of A. Thus it is a maximal eigenvalue of A. If A is irreducible, λ(A) is a
simple, positive, maximal eigenvalue with a positive eigenvector v = (v1, · · · , vn),
i.e., vi > 0 for all 1 ≤ i ≤ n. However, there may exist another eigenvalue μ �= λ(A)
but |μ| = λ(A). For example, consider

A =

(
0 1
1 0

)
.

It is an irreducible matrix. The spectral radius is 1 which is a simple, positive,
maximal eigenvalue with an eigenvector v1 = (1, 1). However, −1 is also an eigen-
value with an eigenvector v = (1,−1). But if A is positive, that is, every entry is a
positive number, the Perron-Frobenius theorem states that λ(A) is a unique, sim-
ple, positive, maximal eigenvalue with a positive eigenvector v = (v1, · · · , vn), i.e.,
vi > 0 for all 1 ≤ i ≤ n. Here the term “unique” means that all other eigenvalues
μ of A satisfy that

|μ| < λ(A).

Definition 6. We say that a multi-curve Γ is irreducible if the corresponding matrix
AΓ of the linear map fΓ : RΓ → RΓ is irreducible.

For any non-negative matrix A, we can rearrange the order of the basis such that

(6) A =

⎛
⎜⎜⎝
A11 0 · · · 0
A21 A22 · · · 0
· · · · · · · · · · · ·
As1 As2 · · · Ass

⎞
⎟⎟⎠

and all the blocks Ajj on the diagonal are either irreducible or 0 matrices. It is not
hard to calculate that

λ(A) = maxjλ(Ajj).

Now we consider A = AΓ as the corresponding matrix of the linear map fΓ :
R

Γ → R
Γ for an f -stable multi-curve Γ = {γ1, · · · , γn}. We assume that A is in the

form of (6). Then we can use Γj to denote the subset of curves in Γ corresponding
to the j-th block in A. That is, Ajj = AΓj

. It is clear that

Γ =
⋃
j

Γj .

We call {Γj} an irreducible decomposition of Γ. The reader should note that Γj

may not be f -stable.
Denote

ΓOb =
⋃
j

Γj ,

where the union runs over all j such that λ(Ajj) ≥ 1. We have the following
definition to relate every element in Γ to ΓOb if it is not empty.

Definition 7. Suppose Γ is an f -stable multi-curve. For every γ ∈ Γ, if there
exists a γob ∈ ΓOb and an integer k ≥ 0 such that γ is homotopic to a component
f−k(γob), then we define the depth of γ with respect to Γ to be the least such
integer k. Otherwise, we define the depth as ∞. The set of all elements in Γ with
finite depth is denoted by Γ0. The set of all elements with infinite depth is denoted
by Γ∞.
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Then

Γ = Γ0 ∪ Γ∞.

It is clear that if Γ is a Thurston obstruction, then Γ0 is non-empty. Moreover, we
have the following lemma.

Lemma 1. If Γ is a Thurston obstruction, then Γ0 is also a Thurston obstruction.
In particular, under a permutation of the basis, we can write

(7) AΓ =

(
AΓ∞ 0
� AΓ0

)
,

where λ(AΓ∞) < 1 and λ(AΓ) = λ(AΓ0
) ≥ 1.

Proof. First, for every curve γ ∈ Γ0, there exists an integer k ≥ 0 and an element
γob ∈ ΓOb such that γ is homotopic to a component of f−k(γob). It follows that any
non-peripheral component γ̃ of f−1(γ) is homotopic to a component of f−(k+1)(γob).
Since Γ is f -stable, then there exists an element γi ∈ Γ which is homotopic to γ̃.
Therefore, any non-peripheral component of f−1(γ) is homotopic to an element
γi ∈ Γ whose depth is at most k+1. This implies that γ ∈ Γ0. Thus Γ0 is f -stable.

Let us write Γ∞ = {γ1, · · · , γs}. Then Γ0 = {γs+1, · · · , γn}. Since Γ0 is f -stable,
AΓ must be of the form (7). Furthermore, since ΓOb ⊂ Γ0, we have that

λ(AΓ∞) < 1 and λ(AΓ0
) = λ(AΓ) ≥ 1. �

Now we study the associated matrix A for a sub-hyperbolic semi-rational
branched covering f . For each disk Di in Λ, we take a point bi on the bound-
ary ∂Di. Set

(8) E = P1 ∪
⋃
i

{ai, bi}.

Let p = �E. It is obvious that every multi-curve Γ in Ĉ \ Q is a multi-curve in

Ĉ \ E. It follows that there are only a finite number of possible matrices for all
linear transformations fΓ (refer to [DH, Lemma 1.2]).

(There are infinitely many possible multi-curves Γ.) Therefore, we have the
following proposition.

Proposition 1. There is a number 0 < β ≤ 1 depending only on the degree d of

f and the cardinality p of E such that for any irreducible multi-curve Γ in Ĉ \ Q
(not necessarily f -stable) with λ(AΓ) ≥ 1, let v be the unique positive eigenvector
of AΓ corresponding to λ(AΓ) ≥ 1 with ‖v‖ = 1. Then, the smallest coordinate of
v is bounded below by β.

Proof. Since there are only finitely many possible matrices for all irreducible multi-
curves, there are finitely many simple, positive, maximal eigenvalues. Thus there
are finitely many positive eigenvectors v with ‖v‖ = 1. This gives the proposition.

�

Proposition 2. There exists a positive integer m such that for any non-empty
f -stable multi-curve Γ, if it is a Thurston obstruction,

||Am
Γ∞ || < 1/2.
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Proof. Since there are only finitely many matrices AΓ corresponding to all Γ, there
are only finitely many AΓ∞ . For each AΓ∞ , λ(AΓ∞) < 1. Thus we have an integer
m > 0 such that

||Am
Γ∞ || < 1/2. �

Every multi-curve Γ can contain at most p− 3 curves, so we have the following
proposition.

Proposition 3. There is a positive integer M depending on p such that for any

f -stable multi-curve Γ in Ĉ \Q, the depth of every γ ∈ Γ0 is less than or equal to
M .

4. Teichmüller space and short geodesics.

Suppose f is a sub-hyperbolic semi-rational branched covering. Recall Q and P1

defined in (2) and (3) and the assumption that 0, 1, ∞ ∈ P1. Let M(C) be the
unit ball of the space L∞(C). That is, it is the set of all measurable functions μ
on C such that essential supremum norm ‖μ‖∞ < 1. Each element μ ∈ M(C) is
called a Beltrami coefficient since the measurable Riemann mapping theorem [AB]
says that the Beltrami equation

φz = μφz

has a unique quasiconformal self-map φμ of Ĉ fixing 0, 1, and ∞ as a solution,
which depends on μ ∈ M(C) holomorphically. The map φμ is called the normalized
solution.

Definition 8. The Teichmüller space Tf is the equivalence class [μ] for μ ∈ M(C)
satisfying that μ|Q = 0 a.e., where μ1 and μ2 are equivalent if and only if φμ1 is
isotopic to φμ2 rel Q. Furthermore, we can define the Teichmüller distance between
two points x = [μ] and y = [ν] in Tf as

dT (x, y) =
1

2
minμ̃∈[μ],ν̃∈[ν] logK[φμ̃ ◦ (φν̃)−1],

where K[φ] is the maximal dilation of the quasiconformal map φ.

From [Li] (or refer to [JZ]), we knew that Tf is the Teichmüller space T (Ĉ \Q)

of Riemann surface Ĉ \ Q with boundary ∂Q. It is a complex manifold and the
projective map

Φ : M(C) → Tf

is a holomorphic split submersion.
Define the self-map σf of the Teichmüller Tf by

σf ([μ]) = [f∗(μ)].

In formula,

(f∗μ)(z) =
μf (z) + μ(f(z))θ(z)

1 + μf (z)μ(f(z))θ(z)
,

where θ(z) = fz/fz and μf (z) = fz̄/fz, is the pull-back of μ by f . Since

σf = Φ ◦ f∗ ◦ Φ−1,

where Φ−1 means a local holomorphic section of Φ. Thus

σf : Tf → Tf



CANONICAL THURSTON OBSTRUCTIONS 15

is a holomorphic map. Since the Teichmüller metric dT coincides with the Kobayashi
metric on the complex manifold Tf and σf is holomorphic, we have that

dT (σf (x), σf (y)) ≤ dT (x, y), ∀x, y ∈ Tf .

From [JZ], we also know that

(9) dT (σf (x), σf (y)) < dT (x, y), ∀x, y ∈ Tf .

We need more definitions and lemmas from [JZ] as follows.

Let Z be a subset of Q with �(Z) ≥ 4. Let x = [μ] ∈ Tf and let γ ∈ Ĉ \ Z be a
simple closed and non-peripheral curve. We use lZ(γ, x) to denote the hyperbolic
length of the unique simple closed geodesic which is homotopic to φμ(γ) in the

hyperbolic Riemann surface Ĉ \ φμ(Z). We say γ is a (μ, Z)-simple closed geodesic

if φμ(γ) is a simple closed geodesic in Ĉ \ φμ(Z).

Remark 2. From the definition of the Teichmüller space Tf , we know that the
definition of lZ(γ, x) is independent of the choice of μ in x.

For x0 ∈ Tf , let xn = σn
f (x0), n = 1, · · · , be a sequence in Tf . Recall our

definition of E in (8).

Lemma 2. If there is a real number a > 0 such that there is a point x0 ∈ Tf and

every (xn, E)-simple closed geodesic γ ⊂ Ĉ \ Q has hyperbolic length greater than
or equal to a, then the sequence {xn}∞n=0 is convergent in Tf and the limiting point
is the fixed point of σf in Tf .

Remark 3. This lemma implies that if there exists an x0 ∈ Tf such that the length
of the shortest geodesic on all the xn has a uniform lower bound, then f has no
Thurston obstructions.

Lemma 3. There exists an η > 0 such that for any point x = [μ] ∈ Tf with

μ(z) = 0 on
⋃

i Ai and for any (x,E)-simple geodesic γ ⊂ Ĉ \E with lE(γ, x) < η,

we have γ ⊂ Ĉ \Q. Moreover, for any ε > 0, there exists a δ > 0 such that

lE(γ, x) > (1− ε)lQ(γ, x)

whenever lE(γ, x) < δ.

Remark 4. The above lemma implies that for any x = [μ] ∈ Tf with μ(z) = 0 for all

z ∈
⋃

i Ai, sufficiently short geodesics in Ĉ\φμ(E) are homotopic to the sufficiently

short geodesics in Ĉ \ φμ(Q). More precisely, we can find a constant δ0 > 0 such
that

1

e
lQ(γ, x) < lE(γ, x) < lQ(γ, x) whenever lE(γ, x) < δ0.

Suppose x = [μ] ∈ Tf and Z ⊂ Q. Define

wZ(γ, x) = − log lZ(γ, x).

Consider the set
LZ,x = {wZ(γ, x)},

where γ ranges over all the non-peripheral simple closed curves in Ĉ \Q. Define

wZ(x) = sup{wZ(γ, x)}
and

wZ(Γ, x) = maxγ∈ΓwZ(γ, x).
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The following lemma is a general result for hyperbolic Riemann surfaces (refer
to [DH,JZ]). We just state it in our case.

Lemma 4. Let Z ⊂ Q be a finite subset with �Z ≥ 4 and let γ ⊂ Ĉ \ Q be a
non-peripheral simple closed curve. Then the function

x �→ wZ(γ, x) : Tf → R

is Lipschitz with Lipschitz constant 2.

Let

A = max{− log log(2
√
2 + 3),− log δ0},

where δ0 is the number in Remark 4. Note that log(2
√
2 + 3) is the magic number

in the theory of hyperbolic Riemann surfaces such that for any hyperbolic Riemann
surface S, any two simple closed geodesics γ and γ′ in S are disjoint whenever the
hyperbolic lengths of γ and γ′ are less than log(2

√
2+3). This implies that for any

point x ∈ Tf , there are at most p− 3 curves γ with lE(γ, x) ≤ log(2
√
2 + 3).

For any J > 0, let (a, b) be the lowest interval in R \ LE,x such that a ≥ A and
b− a = J . For any x = [ν] ∈ Tf , define

ΓJ,x = {γ |γ is a simple closed geodesic on Rx and wE(γ, x) ≥ b}.

Then ΓJ,x is a multi-curve consisting of the geodesics which are sufficiently short

on Ĉ \ φμ(E). This is equivalent saying that they are all the simple closed curves

in Ĉ \ φμ(Q) which are homotopic to sufficiently short simply closed geodesics on

Ĉ\φμ(Q). There are at most p−3 elements in ΓJ,x for any x and they are pairwise
disjoint.

For any x ∈ Tf , let D = dT (x, σf (x)).

Lemma 5. If J ≥ log d+2D+1 and ΓJ,x �= ∅, then ΓJ,x is an f -stable multi-curve.

See Lemma 7.3 in [JZ].

5. Upper bound for Γ∞

We still keep the notation in the previous sections. Suppose x0 ∈ Tf and xn =
σn
f (x0) for all n ≥ 1. Then we have a sequence {xn}∞n=0 in Tf .

For all n > 0 and all z ∈
⋃

i Ai, we have that μn(z) = 0, where [μn] = xn, since
f(
⋃

i Ai) ⊂
⋃

i Di as we constructed {Ai} as the shielding rings.
Recall the definition of E = P1 ∪

⋃
i{ai, bi} in (8) and m in Proposition 2. Let

P2 = E ∪ fm(E) ∪
⋃

1≤j≤m

f j(Ωf ) ⊂ Q.

The following lemma is also from [JZ].

Lemma 6. There exists an ε0 > 0, such that for any x = [μ] ∈ Tf with μ(z) = 0
for all z ∈ ∪iAi, and for any (μ, P2)-simple closed geodesic γ′, if lP2

(γ′, x) < ε0,
then there is a (μ,E)-simple closed geodesic γ such that γ′ is homotopic to γ in

Ĉ \ P2.

The following lemma is also a general result in the theory of hyperbolic Riemann
surfaces and the reader can find a proof in [DH].
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Lemma 7. Let X be a hyperbolic Riemann surface, P ⊂ X is a finite subset, and
�P < p. Let X ′ = X \ P and L < log(3 + 2

√
2). Let γ be a simple closed geodesic

on X, and let γ′
1, · · · , γ′

k be all the geodesics on X ′ homotopic to γ in X whose
hyperbolic length on X ′ is less than L. Set l = lX(γ) and l′i = lX′(γ′

i). Then:

(1) k ≤ p+ 1;
(2) for all i, l′i ≥ l;

(3) 1
l −

1
π − (p+1)

L <
∑k

i=1
1
l′i
< 1

l +
(p+1)

π .

The next proposition is essential for our proof.

Proposition 4. Let m be the constant in Proposition 2. Let x0 ∈ Tf and xn =
σn
f (x0) for n > 0. There exists a constant C(J) > 0 depending on p, d, ε0, D =

dT (x0, x1) and J ≥ m(log d+2D+1) such that if wE(x0) > C(J), then Γ = ΓJ,x0
�=

∅ is a stable multi-curve. Moreover, if Γ∞ �= ∅, then
wE(Γ∞, xm) ≤ wE(Γ∞, x0).

Proof. If wE(x0) ≥ A + (p − 3)J , then ΓJ,x0
is non-empty, since Rx0

has at most
(p− 3) simple closed geodesics with hyperbolic length less than e−A (they are not
homotopic to each other). From Lemma 5, Γ = ΓJ,x0

is also f -stable.
Suppose Γ∞ �= ∅ and AΓ is in the form of (7). From Proposition 2, ||Am

Γ∞
|| < 1/2.

For each γj ∈ ΓJ,x0
, let γi,j,α be any component of f−m(γj) homotopic to γi in

Ĉ\Q. Then γi,j,α is also homotopic to γi in Ĉ\E. Let g = φμ ◦fm ◦ (φν)−1, where
[μ] = x0 and [ν] = xm. Then g is a rational map and

g : Ĉ \ φν(f−m(P2)) → Ĉ \ φμ(P2)

is a holomorphic covering map. Therefore

lf−m(P2)(γi,j,α, xm) = di,j,αlP2
(γj , x0),

where di,j,α is the degree of fm : γi,j,α → γj . We get∑
α

1

lf−m(P2)(γi,j,α, xm)
=

(∑
α

1

di,j,α

) 1

lP2
(γj , x0)

= bij
1

lP2
(γj , x0)

,

where bij is the ij-entry of Am
Γ .

Since E ⊂ P2, the inclusion

ι : Ĉ \ P2 ↪→ Ĉ \ E
decreases the hyperbolic distances. So we have that lP2

(γj , x0) > lE(γj , x0) for any
γj . It follows that ∑

α

1

lf−m(P2)(γi,j,α, xm)
< bij

1

lE(γj , x0)
.

From the definitions of P2 and E, we know that E ⊂ f−m(P2). Let C =
C(d,m, p) = �(f−m(P2) \ E), where p = �E.

We claim that for any (ν, f−m(P2))-simple closed geodesic γ which is homotopic

to γi in Ĉ \ E, either γ is homotopic to some γi,j,α in Ĉ \ f−m(P2) or

lf−m(P2)(γ, xm) > min{e−(A+PJ), ε0},
where ε0 is the constant in Lemma 6.

We prove the claim. In fact, if γ is not homotopic in Ĉ \ f−m(P2) to some γi,j,α,
then fm(γ) is a (μ, P2)-simple closed geodesic which is not homotopic to any γj in
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Ĉ \ P2. Then there are two cases: either (1) fm(γ) is homotopic in Ĉ \ P2 to some
(μ,E)-simple closed geodesic ξ which does not belong to ΓJ,x0

, then we have

lP2
(fm(γ), x0) > lE(f

m(γ), x0) = lE(ξ, x0) > e−a > e−(A+PJ)

or (2) fm(γ) is not homotopic in Ĉ \ P2 to any (μ,E)-simple closed geodesic, then
by Lemma 6, we have

lP2
(fm(γ), x0) > ε0.

Thus we have

lf−m(P2)(γ, xm) ≥ lP2
(fm(γ), x0) > min{e−(A+PJ), ε0}.

This proves the claim.
From the left hand of the inequality given by (3) in Lemma 7, for each γi ∈ Γ,

we have

1

lE(γi, xm)
− 1

π
− C + 1

min{e−(A+PJ), ε0}
≤

∑
j,α

1

lf−m(P2)(γi,j,α, xm)
≤

∑
j

bij
1

lE(γj , x0)
.

Suppose Γ∞ = {γ1, · · · , γs} ⊂ Γ. Then for each γi ∈ Γ∞, from the form (7) of
AΓ,

1

lE(γi, xm)
≤

s∑
j=1

bij
1

lE(γj , x0)
+

1

π
+

C + 1

min{e−(A+PJ), ε0}
.

Let

v1 =

⎛
⎜⎝

1
lE(γ1,xm)

...
1

lE(γs,xm)

⎞
⎟⎠ and v =

⎛
⎜⎝

1
lE(γ1,x0)

...
1

lE(γs,x0)

⎞
⎟⎠ .

Since ‖Am
∞‖ < 1/2,

‖v1‖ <
1

2
‖v‖+ 1

π
+

C + 1

min{e−(A+PJ), ε0}
.

Define

C(J) = max
{
2
( 1

π
+

C + 1

min{e−(A+PJ), ε0}

)
, A+ (p− 3)J

}
.

If wE(Γ∞, x0) ≥ C(J), then we have

wE(Γ∞, xm) < wE(Γ∞, x0). �

Lemma 8. Let J ≥ m(log d + 2D + 1). Suppose wE(x0) < C(J) and suppose
Γ = ΓJ,xk

�= ∅ for some k ≥ 0. Let E(J) = C(J) + 2mD. If Γ∞ �= ∅, then for all
n,

wE(Γ∞, xn) < E(J).

Moreover, if wE(γ, xk) ≥ E(J), then γ ∈ Γ0.

Proof. We prove the first inequality by contradiction. Suppose there is an n > 0
such that wE(Γ∞, xn) ≥ C(J) + 2mD. Suppose n0 is the first integer having this
property. Then we have wE(Γ∞, xn0−m) ≥ C(J). Then by Proposition 4 and the
fact that n0 is the first integer such that wE(Γ∞, xn0

) ≥ C(J) + 2mD, we have

wE(Γ∞, xn0
) ≤ wE(Γ∞, xn0−m) < C(J) + 2mD.

This is a contradiction.
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If wE(γ, xk) ≥ E(J) > C(J) ≥ A+ (p− 3)J , then γ ∈ ΓJ,xk
= Γ since there are

at most p − 3 simple closed curves in Rxk
such that wE(γ, xk) > A. But γ /∈ Γ∞

because of the first conclusion and the assumption. Therefore, γ ∈ Γ0. �

6. Lower bound for Γ0

In order to get the lower bound for Γ0, we need the following definition.

Definition 9. Let κ be a real number. A sequence {an}∞n=0 of real numbers is
called κ-quasi-nondecreasing if for all n1 < n2 we have an2

− an1
≥ κ. A sequence

is called quasi-nondecreasing if it is κ-quasi-nondecreasing for some κ.

It is easy to check that the following two properties are true.

Property 1. Suppose {an}∞n=0 and {bn}∞n=0 are two sequences. If {an}∞n=0 is
κ-quasi-nondecreasing and if |an − bn| < r for all n, then {bn} is (κ − 2r)-quasi-
nondecreasing.

Property 2. Suppose {an} is quasi-nondecreasing and unbounded. Then an →
+∞ as n → +∞.

Recall that any x = [μ] ∈ Tf represents a complex structure on Ĉ \ Q, which

makes Ĉ \ Q a hyperbolic Riemann surface Rx. For any simple closed geodesic γ
on Rx, let A(γ, x) be the Riemann surface, conformally isomorphic to an annulus,
obtained by taking the unit disk D modulo a Z-subgroup of the fundamental group
of Rx generated by γ. It is a covering space of Rx. The core curve of A(γ, x) is a
geodesic of length lQ(γ, x) and

(10) mod(A(γ, x)) =
π

lQ(γ, x)
,

where mod(A) means the modulus of an annulus A.
If γ is a simple closed geodesic of hyperbolic length l on the Riemann surface Rx,

then there is an embedding annulus a(γ, x) of modulus m(l) which is continuous
and decreasing and satisfies

π

l
− 1 < m(l) <

π

l
.

Thus for all x ∈ Tf , we have

(11) mod(A(γ, x))− 1 < mod(a(γ, x)) < mod(A(γ, x)).

We need the following technical lemma.

Lemma 9. If t ≥ 1, then log(t+ 1)− 1 < log t.

Proof. For t ≥ 1,

log(t+ 1)− log t = log(
t+ 1

t
) ≤ log 2 < 1. �

If wQ(γ, x) ≥ log 2
π = −0.451582705 · · · , then we have mod(A(γ, x)) − 1 ≥ 1.

By taking logarithms on all terms of inequality (11) and by applying Lemma 9 and
equation (10), we have

log π − 1 + wQ(γ, x) < logmod(a(γ, x)) < log π + wQ(γ, x).

It follows that, if wQ(γ, x) ≥ log 2
π , then

(12) | logmod(a(γ, x))− wQ(γ, x)| < log π.
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Given a multi-curve Γ, we denote vectors of moduli (mod(A(γ, x))) and
(mod(a(γ, x))) by mod(A(Γ, x)) and mod(a(Γ, x)) respectively. Define

mod(A(Γ, x)) = minγ∈Γ{mod(A(γ, x))}
and

mod(a(Γ, x)) = minγ∈Γ{mod(a(γ, x))}.

Lemma 10. Let β be the constant in Proposition 1. Let Γ be an irreducible multi-
curve. Suppose the leading eigenvalue of the matrix AΓ is greater than or equal to
1. Then for any x0 ∈ Tf and xn = σn

f (x0), n > 0,

(1) mod(A(Γ, xn)) ≥ βmod(a(Γ, x0)) and
(2) mod(a(Γ, xn)) ≥ βmod(a(Γ, x0))− 1.

Proof. Since for any n, fn : Ĉ → Ĉ is a branched covering, we can similarly define
the linear map fn

Γ : RΓ → R
Γ. Let B be the corresponding matrix for the linear

map fn
Γ with the basis Γ. It is easy to see that B ≥ An

Γ.
Let v be the unique positive eigenvector of AΓ with ‖v‖ = 1. Let 1 denote the

vector whose coordinates are all equal to 1. Then

mod(a(Γ, x0)) ≥ mod(a(Γ, x0)1 ≥ mod(a(Γ, x0))v.

For any n ≥ 1, let γn
i,j,α be the components of f−n(γj) homotopic to γi, and ani,j,α

be the components of f−n(a(γj , x0)) homotopic to γi. Then

mod(ani,j,α) = mod(a(γj , x0))/d
n
i,j,α,

where dni,j,α = degfn|γn
i,j,α

. Since ani,j,α are disjoint annuli homotopic to the curve

γi, we have ∑
α,j

mod(ani,j,α) ≤ mod(A(γi, xn)).

(One can obtain this inequality by lifting them to the covering space A(γi, xn) of
Rxn

and then by using Grötzsch’s inequality.) Consequently we get

mod(A(Γ, xn)) ≥ mod(a(Γ, xn)) ≥ Bmod(a(Γ, x0))

≥ An
Γmod(a(Γ, x0)) ≥ An

Γmod(a(Γ, x0))v

≥ mod(a(Γ, x0))v ≥ βmod(a(Γ, x0))1.

Hence for all γ ∈ Γ, we have mod(A(γ, xn)) ≥ βmod(a(Γ, x0)). The second conclu-
sion follows the first one and inequality (11). �

Lemma 11. If a, b > 0, β > 0, and ea ≥ βeb − 1, then a− b ≥ log β − 1.

Proof. If β exp b− 1 ≥ 1, then by Lemma 9, we have

log(β exp b− 1) ≥ log(βeb)− 1 ≥ log β + b− 1.

Hence by the assumption, we have a− b ≥ log β − 1.
If β exp b− 1 < 1, then b < log 2− log β. Since a > 0,

a− b > 0− b = −b > log β − log 2 > log β − 1. �

For any x ∈ Tf and any multi-curve Γ, define

w(Γ, x) = minγ∈ΓwQ(γ, x).
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Lemma 12. Suppose Γ is an irreducible multi-curve and suppose the leading eigen-
value of the matrix AΓ is greater than or equal to 1. For any x0 ∈ Tf , if w(Γ, x0) ≥
log(3/β) + log π, then the sequence {w(Γ, xn)}∞n=0, where xn = σn

f (x0), is (log β −
1− 2 log π)-quasi-nondecreasing.

Proof. For w(Γ, x0) ≥ log(3/β) + log π > log 2
π , by inequality (12), we have

logmod(a(Γ, x0)) ≥ log(
3

β
).

That is, mod(a(Γ, x0)) ≥ 3/β. So βmod(a(Γ, x0))− 1 ≥ 2. By Lemma 10, we have
that for all n ≥ 0,

(13) mod(a(Γ, xn)) ≥ 2.

Now consider the sequence yn = logmod(a(Γ, xn)). Choose arbitrarily n2 > n1 ≥ 0,
and let a = yn2

, b = yn1
and n = n2 − n1. By Lemma 10, we have ea ≥ βeb − 1.

Applying Lemma 11, we have a−b ≥ log β−1, so the sequence {yn} is a (log β−1)-
quasi-nondecreasing.

By inequalities (11) and (13), we have mod(A(Γ, x)) ≥ 2. This implies that
log π + w(Γ, xn) ≥ log 2. That is, w(Γ, xn) ≥ log(2/π). Since mod(a(γ, xn)) is
continuous and decreasing with lQ(γ, xn), we obtain

mod(a(Γ, xn)) = mod(a(γ, xn)) and w(Γ, xn) = wQ(γ, xn)

at the same γ ∈ Γ. This further implies that

|yn − w(Γ, xn)| < log π.

From Property 1, we finally have that w(Γ, xn) is (log β − 1 − 2 log π)-quasi-non-
decreasing. �

Lemma 13. Let k ≥ 1 be an integer. For any x0 ∈ Tf , let xn = σn
f (x0) for n > 0.

Let D = dT (x0, x1). If γ1, γ2 are non-peripheral curves in Ĉ \ Q such that some
component of f−k(γ1) is homotopic to γ2, then

wQ(γ2, x0) ≥ wQ(γ1, x0)− k(log d+ 2D).

Proof. Let Y = f−k(Rx0
). Then Y ⊂ Rxk

is a Riemann surface and fk : Y → Rx0

is a holomorphic covering map of degree dk. Then

lY (γ2) ≤ dklQ(γ1, x0).

Since the inclusion map ι : Y ↪→ Rxk
decreases the hyperbolic lengths,

lQ(γ2, xk) ≤ dklQ(γ1, x0).

It follows that

wQ(γ2, xk) > wQ(γ1, x0)− k log d.

Since σf decreases the Teichmüller distance dT ,

dT (xi, xi+1) ≤ dT (x0, x1) = D.

The map γ �→ wQ(γ, x) for any x ∈ Tf is a Lipschitz function with Lipschitz
constant 2 (see Lemma 4), so we have that

wQ(γ2, x0) ≥ wQ(γ2, xk)− 2kD ≥ wQ(γ1, x0)− k(2D + log d). �
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Lemma 14. Suppose Γ is an irreducible multi-curve. Then for all γi, γj ∈ Γ and
all x ∈ Tf ,

|wQ(γi, x)− wQ(γj , x)| ≤ (p− 3)(log d+ 2D).

Proof. Since Γ is irreducible, there is an integer q ≤ �Γ ≤ p − 3 such that γi
is homotopic to a preimage of f−q(γj). By Lemma 13, we see that wQ(γi, x) ≥
wQ(γj , x)− (p− 3)(log d+2D). By exchanging i and j, we complete the proof. �

Proposition 5. Suppose Γ is an f -stable multi-curve satisfying Γ = Γ0. Let x0 ∈
Tf and xn = σn

f (x0), n > 0. Let D = dT (x0, x1). Suppose minγwQ(γ, x0) ≥
log(3/β)+ log π, where β is the number in Proposition 1. Write Γ = Γ′�Γ

′′
, where

Γ′ = ΓOb is the union of the irreducible component Γj of Γ for which λ(AΓj
) ≥ 1.

Then

(1) for all γ ∈ Γ′, {wQ(γ, xn)}n≥0 is κ-quasi-nondecreasing, where κ = log β−
1− 2 log π − 2(p− 3)(log d+ 2D);

(2) for all γ ∈ Γ
′′
and all n ≥ 0,

wQ(γ, xn) ≥ minγ′∈Γ′{wQ(γ
′, xn)} −M(log d+ 2D),

where M is the constant in Proposition 3.
(3) Suppose minγ∈ΓwQ(γ, x0) ≥ JA − 1, where

JA = max{log(3/β) + log π,A}+ κ+M(log d+ 2D) + 1.

Then for all γ ∈ Γ and for all n ≥ 0, we have

wQ(γ, xn) ≥ A.

Proof. Let Γj be an irreducible component of Γ for which λ(Γj) ≥ 1. By the
assumption that w(Γ, x0) ≥ log(3/β) + log π, we have {w(Γj , xn)} is log β − 1 −
2 log π-quasi-nondecreasing.

Since Γj is an irreducible multi-curve, by Lemma 13 and Property 1, we have
for each γ ∈ Γj , the sequence {wQ(γ, xk)}∞k=0 is a κ = log β − 1 − 2 log π −
2(p− 3)(log d+ 2D)-quasi-nondecreasing. This completes (1).

By Lemma 12 and (1), we have for all γ ∈ Γ
′′
and all n ≥ 0,

wQ(γ, xn) ≥ minγ′∈Γ′{wQ(γ
′, xn)} −M(log d+ 2D).

This is (2).
(3) follows from (1) and (2) immediately. �

Proposition 6. Suppose Γ is an f -stable multi-curve satisfying Γ = Γ0. Let x0 ∈
Tf and xn = σn

f (x), n > 0, and D = dT (x0, x1). Suppose minγ∈ΓwE(γ, x0) ≥ JA.

Write Γ = Γ′ � Γ
′′
, where Γ′ = ΓOb is the union of the irreducible component Γj of

Γ for which λ(AΓj
) ≥ 1. Then:

(1) For all γ ∈ Γ, wE(γ, xn) ≥ A for any n ≥ 0.
(2) For all γ ∈ Γ′, {wE(γ, xn)}n≥0 is (κ− 2)-quasi-nondecreasing.

(3) For all γ ∈ Γ
′′
and all n ≥ 0,

wE(γ, xn) ≥ minγ′∈Γ′{wE(γ
′, xn)} − 2−M(log d+ 2D).

Proof. From Lemma 3, we have, for any x ∈ Tf ,

wQ(γ, x) ≤ wE(γ, x) ≤ wQ(γ, x) + 1
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if wE(γ, x) ≥ A. If minγwE(γ, x0) ≥ JA, then minγwQ(γ, x0) ≥ JA − 1; then, by
Proposition 5, for any n ≥ 0 and γ ∈ Γ, wQ(γ, xn) ≥ A. Consequently, wE(γ, xn) ≥
A. We get (1).

From (1), we have |wE(γ, xn)−wQ(γ, xn)| < 1 for all n ≥ 0. Then by Property 1
and Proposition 5, we have (2) and (3). �

7. Proof of Theorem 1

Choose any x0 ∈ Tf , we can find a J ≥ JA such that wE(x0) < C(J). Without
loss of generality, we assume that J = JA. Since C(J) is an increasing function
of J , we have wE(x0) < C(J) for all J ≥ JA. Let xn = σn

f (x0), n > 0, and

D = dT (x0, x1).
Suppose that f is not equivalent to a rational map. By Lemma 2, the sequence

{wE(xn)}n≥0 is unbounded. Thus there exists γk and xnk
with wE(γk, xnk

) → ∞,
as k → ∞.

Fix J > J0 = JA + |A|. Then wE(γk, xnk
) > E(J) = C(J) + 2mD for some k.

So by Lemma 8, the set of the finite depth curves in ΓJ,xnk
, denoted by ΓJ,xnk

,0, is
nonempty.

Moreover, if for some n0, γ ∈ ΓJ,n0,0, then wE(γ, xn0
) > a + J ≥ JA, which

implies wE(γ, xn) ≥ A for all n ≥ n0 by Proposition 6. This implies that ΓJ =⋃
n ΓJ,xn,0 and G =

⋃
J≥J0

ΓJ are multi-curves, since γ ∈ ΓJ satisfies wE(γ, xn) ≥ A
for all n sufficiently large.

Since wE(γk, xnk
) → ∞, as k → ∞, given any fixed J ≥ J0, wE(γk, xnk

) ≥ E(J)
for infinitely many k. Hence γk ∈ ΓJ ⊂ G infinitely often. Since G is finite, for
some γ ∈ G, we have γk = γ for infinitely many k. Hence the set

Γu = {γ | {wE(γ, xn)}n≥0 is unbounded}

is nonempty.

Proposition 7. Γu =
⋂

J≥J0
ΓJ .

Proof. The inclusion
⋂

J>J0
ΓJ ⊂ Γu is clear. To see the other inclusion, let γ ∈ Γu.

Given J , there exists some n such that w(γ, xn) > E(J). By Lemma 8, γ ∈ ΓJ,xn,0.
Thus

⋂
J>J0

ΓJ ⊃ Γu. This proves the proposition. �

Proposition 8. Γu = ΓJc
for some Jc ≥ JA.

Proof. We prove it by contradiction. Since Γu =
⋂

J≥J0
ΓJ , for all J ≥ J0, if

Γu �= ΓJ , then there exists a curve γJ such that γJ ∈ ΓJ ⊂ G but γJ /∈ Γu. Since G
is finite, this implies that there is some γ ∈ G such that γ = γJ ∈ ΓJ for infinitely
many J , while also γ /∈ Γu. This is a contradiction, since γ ∈ ΓJ for infinitely many
J implies that the sequence {wE(γ, xn)} is unbounded. The contradiction proves
the proposition. �

Now consider Γu = ΓJc
=

⋃
n ΓJc,xn,0.

For each k such that Γ = ΓJc,xk,0 is nonempty, applying Proposition 6, we know
that if γ′ ∈ Γ′, then the sequence {wE(γ

′, xn)}n≥0 is both unbounded and quasi-
nondecreasing, so wE(γ

′, xn) → ∞, as n → ∞. (3) of Proposition 6 implies that
wE(γ, xn) → ∞, as n → ∞, for all γ ∈ Γ′′. Hence

Γu = {γ | wE(γ, xn) → ∞ as n → ∞}.
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Proposition 9. Γu = ΓJc,xnc ,0
for some n = nc.

Proof. Since Γu =
⋃

n ΓJc,xn,0, the inclusion ΓJc,xn,0 ⊂ Γu ⊂ G holds for all n.
Since there are finitely many elements in G, there exists an nc such that for all

γ ∈ Γu,
wE(γ, xnc

) > E(Jc).

By Lemma 8, we have γ ∈ ΓJc,xnc ,0
. Thus Γu = ΓJc,nc,0. �

From Proposition 9, Γu is a Thurston obstruction. Furthermore, Γu depends
only on f and is independent of the initial point x0, since for any γ, the map
x �→ wE(γ, x) is a Lipschitz map with Lipschitz constant 2 (see Lemma 4) and
since σf decreases the Teichmüller distance dT .

Finally, since
wQ(γ, x) ≤ wE(γ, x) ≤ 1 + wQ(γ, x),

if wE(γ, x) ≥ A (refer to Remark 4), we have that

Γc = {γ | wQ(γ, xn) → ∞ as n → ∞}
= {γ | wE(γ, xn) → ∞ as n → ∞} = Γu.

Therefore, Γc is a Thurston obstruction. This completes the proof of Theorem 1.
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