## Proof of a folklore Julia set connectedness theorem and connections with elliptic functions

HTML articles powered by AMS MathViewer

- by Jane M. Hawkins
- Conform. Geom. Dyn.
**17**(2013), 26-38 - DOI: https://doi.org/10.1090/S1088-4173-2013-00252-X
- Published electronically: February 14, 2013
- PDF | Request permission

## Abstract:

We prove the following theorem about Julia sets of the maps \[ f_{n,p,\gamma }(z)= z^n + \frac {\gamma }{z^p}, \] for integers $n,p \geq 2$, $\gamma \in \mathbb {C}$ by using techniques developed for the Weierstrass elliptic $\wp$ function and adapted to this setting.

**Folklore connectedness theorem**: *If $f_{n,p,\gamma }$ has a bounded critical orbit, then $J(f_{n,p,\gamma })$ is connected.*

This is related to connectivity results by the author and others about $J(\wp )$, where $\wp$ denotes the Weierstrass elliptic $\wp$ function, especially where the period lattice has some symmetry. We illustrate several further connections between the dynamics of some specific elliptic functions and the family $f_{n,p,\gamma }$ for some values of $n$ and $p$.

## References

- Alan F. Beardon,
*Iteration of rational functions*, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR**1128089**, DOI 10.1007/978-1-4612-4422-6 - Walter Bergweiler,
*Iteration of meromorphic functions*, Bull. Amer. Math. Soc. (N.S.)**29**(1993), no.Β 2, 151β188. MR**1216719**, DOI 10.1090/S0273-0979-1993-00432-4 - P. Blanchard, F. Cilingir, D. Cuzzocreo, D. Look, and E. Russell, Checkerboard Julia Sets for Rational Maps (preprint, 2011).
- Joshua J. Clemons,
*Dynamical properties of Weierstrass elliptic functions on square lattices*, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)βThe University of North Carolina at Chapel Hill. MR**2941395** - Joshua J. Clemons,
*Connectivity of Julia sets for Weierstrass elliptic functions on square lattices*, Proc. Amer. Math. Soc.**140**(2012), no.Β 6, 1963β1972. MR**2888184**, DOI 10.1090/S0002-9939-2011-11079-7 - Robert L. Devaney,
*Structure of the McMullen domain in the parameter planes for rational maps*, Fund. Math.**185**(2005), no.Β 3, 267β285. MR**2161407**, DOI 10.4064/fm185-3-5 - Robert L. Devaney, Daniel M. Look, and David Uminsky,
*The escape trichotomy for singularly perturbed rational maps*, Indiana Univ. Math. J.**54**(2005), no.Β 6, 1621β1634. MR**2189680**, DOI 10.1512/iumj.2005.54.2615 - R. Devaney, E. Russell, Connectivity of Julia Sets for Singularly Perturbed Rational Maps (preprint, 2012).
- Patrick Du Val,
*Elliptic functions and elliptic curves*, London Mathematical Society Lecture Note Series, No. 9, Cambridge University Press, London-New York, 1973. MR**0379512**, DOI 10.1017/CBO9781107359901 - Jane Hawkins,
*A family of elliptic functions with Julia set the whole sphere*, J. Difference Equ. Appl.**16**(2010), no.Β 5-6, 597β612. MR**2642468**, DOI 10.1080/10236190903257859 - Jane Hawkins and Lorelei Koss,
*Ergodic properties and Julia sets of Weierstrass elliptic functions*, Monatsh. Math.**137**(2002), no.Β 4, 273β300. MR**1947915**, DOI 10.1007/s00605-002-0504-1 - Jane Hawkins and Lorelei Koss,
*Parametrized dynamics of the Weierstrass elliptic function*, Conform. Geom. Dyn.**8**(2004), 1β35. MR**2060376**, DOI 10.1090/S1088-4173-04-00103-1 - Jane Hawkins and Lorelei Koss,
*Connectivity properties of Julia sets of Weierstrass elliptic functions*, Topology Appl.**152**(2005), no.Β 1-2, 107β137. MR**2160809**, DOI 10.1016/j.topol.2004.08.018 - Jane Hawkins and Mark McClure,
*Parameterized dynamics for the Weierstrass elliptic function over square period lattices*, Internat. J. Bifur. Chaos Appl. Sci. Engrg.**21**(2011), no.Β 1, 125β135. MR**2786816**, DOI 10.1142/S0218127411028301 - John Milnor,
*Dynamics in one complex variable*, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR**1721240** - Yingqing Xiao and Weiyuan Qiu,
*The rational maps $F_\lambda (z)=z^m+\lambda /z^d$ have no Herman rings*, Proc. Indian Acad. Sci. Math. Sci.**120**(2010), no.Β 4, 403β407. MR**2761768**, DOI 10.1007/s12044-010-0044-x

## Bibliographic Information

**Jane M. Hawkins**- Affiliation: Department of Mathematics, University of North Carolina at Chapel Hill, CB #3250, Chapel Hill, North Carolina 27599-3250
- MR Author ID: 82840
- Email: jmh@math.unc.edu
- Received by editor(s): July 15, 2012
- Published electronically: February 14, 2013
- Additional Notes: This work was partially funded by a University of North Carolina, University Research Council Grant
- © Copyright 2013 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**17**(2013), 26-38 - MSC (2010): Primary 37F10, 37F45; Secondary 30D05, 30B99
- DOI: https://doi.org/10.1090/S1088-4173-2013-00252-X
- MathSciNet review: 3019711