## A Cantor set with hyperbolic complement

HTML articles powered by AMS MathViewer

- by Juan Souto and Matthew Stover PDF
- Conform. Geom. Dyn.
**17**(2013), 58-67 Request permission

## Abstract:

We construct a Cantor set in $\mathbb {S}^3$ whose complement admits a complete hyperbolic metric.## References

- I. Agol,
*Tameness of hyperbolic $3$-manifolds*, math.GT/0405568. - M. L. Antoine,
*Sur la possibilité d’étendre l’homéiomorphie de deux figures à leur voisinages*, C.R. Acad. Sci. Paris**171**(1920), 661–664. - M. Bestvina and D. Cooper,
*A wild Cantor set as the limit set of a conformal group action on $S^3$*, Proc. Amer. Math. Soc.**99**(1987), no. 4, 623–626. MR**877028**, DOI 10.1090/S0002-9939-1987-0877028-4 - R. H. Bing,
*A homeomorphism between the $3$-sphere and the sum of two solid horned spheres*, Ann. of Math. (2)**56**(1952), 354–362. MR**49549**, DOI 10.2307/1969804 - Danny Calegari and David Gabai,
*Shrinkwrapping and the taming of hyperbolic 3-manifolds*, J. Amer. Math. Soc.**19**(2006), no. 2, 385–446. MR**2188131**, DOI 10.1090/S0894-0347-05-00513-8 - D. G. DeGryse and R. P. Osborne,
*A wild Cantor set in $E^{n}$ with simply connected complement*, Fund. Math.**86**(1974), 9–27. MR**375323**, DOI 10.4064/fm-86-1-9-27 - Michael Freedman, Joel Hass, and Peter Scott,
*Least area incompressible surfaces in $3$-manifolds*, Invent. Math.**71**(1983), no. 3, 609–642. MR**695910**, DOI 10.1007/BF02095997 - Michael H. Freedman and Richard Skora,
*Strange actions of groups on spheres*, J. Differential Geom.**25**(1987), no. 1, 75–98. MR**873456** - Dennis J. Garity, Dušan Repovš, and Matjaž Željko,
*Rigid Cantor sets in $\textbf {R}^3$ with simply connected complement*, Proc. Amer. Math. Soc.**134**(2006), no. 8, 2447–2456. MR**2213719**, DOI 10.1090/S0002-9939-06-08459-0 - William Jaco,
*Lectures on three-manifold topology*, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR**565450**, DOI 10.1090/cbms/043 - Klaus Johannson,
*Homotopy equivalences of $3$-manifolds with boundaries*, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR**551744**, DOI 10.1007/BFb0085406 - T. Jørgensen and A. Marden,
*Algebraic and geometric convergence of Kleinian groups*, Math. Scand.**66**(1990), no. 1, 47–72. MR**1060898**, DOI 10.7146/math.scand.a-12292 - Michael Kapovich,
*Hyperbolic manifolds and discrete groups*, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. MR**1792613** - R. Kent and J. Souto,
*Geometric limits of knot complements, II: Graphs determined by their complements*, accepted for publication in Mathematische Zeitschrift. - A. Marden,
*Outer circles*, Cambridge University Press, Cambridge, 2007. An introduction to hyperbolic 3-manifolds. MR**2355387**, DOI 10.1017/CBO9780511618918 - Robert Myers,
*Excellent $1$-manifolds in compact $3$-manifolds*, Topology Appl.**49**(1993), no. 2, 115–127. MR**1206219**, DOI 10.1016/0166-8641(93)90038-F - Jean-Pierre Otal,
*Thurston’s hyperbolization of Haken manifolds*, Surveys in differential geometry, Vol. III (Cambridge, MA, 1996) Int. Press, Boston, MA, 1998, pp. 77–194. MR**1677888** - R. B. Sher,
*Concerning wild Cantor sets in $E^{3}$*, Proc. Amer. Math. Soc.**19**(1968), 1195–1200. MR**234438**, DOI 10.1090/S0002-9939-1968-0234438-4 - R. Schoen and Shing Tung Yau,
*Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature*, Ann. of Math. (2)**110**(1979), no. 1, 127–142. MR**541332**, DOI 10.2307/1971247 - Richard Skora,
*Cantor sets in $S^3$ with simply connected complements*, Topology Appl.**24**(1986), no. 1-3, 181–188. Special volume in honor of R. H. Bing (1914–1986). MR**872489**, DOI 10.1016/0166-8641(86)90060-X - William P. Thurston,
*Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds*, Ann. of Math. (2)**124**(1986), no. 2, 203–246. MR**855294**, DOI 10.2307/1971277 - Friedhelm Waldhausen,
*On irreducible $3$-manifolds which are sufficiently large*, Ann. of Math. (2)**87**(1968), 56–88. MR**224099**, DOI 10.2307/1970594

## Additional Information

**Juan Souto**- Affiliation: Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada V6T 1Z2
- Email: jsouto@math.ubc.ca
**Matthew Stover**- Affiliation: Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109–1043
- MR Author ID: 828977
- Email: stoverm@umich.edu
- Received by editor(s): May 29, 2012
- Published electronically: April 22, 2013
- Additional Notes: The first author was partially supported by NSERC Discovery and Accelerator Supplement grants.

The second author was partially supported by NSF RTG grant DMS 0602191. - © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn.
**17**(2013), 58-67 - MSC (2010): Primary 30F40, 57M50; Secondary 30F45
- DOI: https://doi.org/10.1090/S1088-4173-2013-00249-X
- MathSciNet review: 3045630

Dedicated: To Dick Canary on the occasion of his $50^{th}$ birthday