Classification of quaternionic hyperbolic isometries
HTML articles powered by AMS MathViewer
- by Krishnendu Gongopadhyay and Shiv Parsad PDF
- Conform. Geom. Dyn. 17 (2013), 68-76 Request permission
Abstract:
Let $\mathbb {F}$ denote either the complex numbers $\mathbb {C}$ or the quaternions $\mathbb {H}$. Let $\mathbf {H}_{\mathbb {F}}^n$ denote the $n$-dimensional hyperbolic space over $\mathbb {F}$. We obtain algebraic criteria to classify the isometries of $\mathbf {H}_{\mathbb {F}}^n$. This generalizes the work in Geom. Dedicata 157 (2012), 23–39 and Proc. Amer. Math. Soc. 141 (2013), 1017–1027, to isometries of arbitrary dimensional quaternionic hyperbolic space. As a corollary, a characterization of isometries of $\mathbf {H}_{\mathbb {C}}^n$ is also obtained.References
- Lars V. Ahlfors, On the fixed points of Möbius transformations in $\textbf {R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15–27. MR 802464, DOI 10.5186/aasfm.1985.1005
- Daniel Allcock, New complex- and quaternion-hyperbolic reflection groups, Duke Math. J. 103 (2000), no. 2, 303–333. MR 1760630, DOI 10.1215/S0012-7094-00-10326-2
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Wensheng Cao and Krishnendu Gongopadhyay, Commuting isometries of the complex hyperbolic space, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3317–3326. MR 2811286, DOI 10.1090/S0002-9939-2011-10796-2
- Wensheng Cao and Krishnendu Gongopadhyay, Algebraic characterization of isometries of the complex and the quaternionic hyperbolic planes, Geom. Dedicata 157 (2012), 23–39. MR 2893478, DOI 10.1007/s10711-011-9599-7
- Wensheng Cao and John R. Parker, Jørgensen’s inequality and collars in $n$-dimensional quaternionic hyperbolic space, Q. J. Math. 62 (2011), no. 3, 523–543. MR 2825470, DOI 10.1093/qmath/haq003
- Wensheng Cao, John R. Parker, and Xiantao Wang, On the classification of quaternionic Möbius transformations, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 349–361. MR 2092064, DOI 10.1017/S0305004104007868
- S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49–87. MR 0377765
- R. Dye and R. W. D. Nickalls, The geometry of the discriminant of a polynomial. The Mathematical Gazette, vol. 80, no. 488 (1996), 279-285.
- Georges Giraud, Sur certaines fonctions automorphes de deux variables, Ann. Sci. École Norm. Sup. (3) 38 (1921), 43–164 (French). MR 1509233, DOI 10.24033/asens.731
- William M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1695450
- Krishnendu Gongopadhyay, Algebraic characterization of the isometries of the hyperbolic 5-space, Geom. Dedicata 144 (2010), 157–170. MR 2580424, DOI 10.1007/s10711-009-9394-x
- Krishnendu Gongopadhyay, Algebraic characterization of isometries of the complex and the quaternionic hyperbolic $3$-spaces, Proc. Amer. Math. Soc. 141 (2013), no. 3, 1017–1027. MR 3003693, DOI 10.1090/S0002-9939-2012-11422-4
- K. Gongopadhyay, The z-classes of quaternionic hyperbolic isometries, J. Group Theory, DOI 10.1515/jgt-2013-0013.
- K. Gongopadhyay, J. R. Parker and S. Parsad, On the classification of unitary matrices, Preprint.
- Lu Yang, Xiaorong Hou, and Zhenbing Zeng, A complete discrimination system for polynomials, Sci. China Ser. E 39 (1996), no. 6, 628–646. MR 1438754
- Inkang Kim and John R. Parker, Geometry of quaternionic hyperbolic manifolds, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 291–320. MR 2006066, DOI 10.1017/S030500410300687X
- H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A 52 (1949), 253–260. MR 0036738
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- S. Wolfram, “Mathematica: A System for Doing Mathematics by Computer,” Wolfram Press, 2000.
- Masaaki Wada, Conjugacy invariants of Möbius transformations, Complex Variables Theory Appl. 15 (1990), no. 2, 125–133. MR 1058518, DOI 10.1080/17476939008814442
- P. L. Waterman, Möbius transformations in several dimensions, Adv. Math. 101 (1993), no. 1, 87–113. MR 1239454, DOI 10.1006/aima.1993.1043
- Wolfram Demonstration Project, The structure of real roots of a quintic polynomial, http://demonstrations.wolfram.com/TheStructureOfTheRealRootsOsAQuinticPolynomial/ Contributed by: Andrej Kozlowski.
- Fuzhen Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997), 21–57. MR 1421264, DOI 10.1016/0024-3795(95)00543-9
Additional Information
- Krishnendu Gongopadhyay
- Affiliation: Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, S.A.S. Nagar, Sector 81, P. O. Manauli, Pin 140306, India
- MR Author ID: 866190
- Email: krishnendug@gmail.com
- Shiv Parsad
- Affiliation: Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, S.A.S. Nagar, Sector 81, P. O. Manauli, Pin 140306, India
- Email: parsad.shiv@gmail.com
- Received by editor(s): August 1, 2012
- Published electronically: May 6, 2013
- Additional Notes: The first author acknowledges the support of SERC-DST FAST grant SR/FTP/MS-004/2010.
The second author acknowledges the support of CSIR research fellowship. - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 17 (2013), 68-76
- MSC (2010): Primary 51M10; Secondary 15B33, 15B57, 20G20
- DOI: https://doi.org/10.1090/S1088-4173-2013-00256-7
- MathSciNet review: 3049200