## Boundary values of the Thurston pullback map

HTML articles powered by AMS MathViewer

- by Russell Lodge
- Conform. Geom. Dyn.
**17**(2013), 77-118 - DOI: https://doi.org/10.1090/S1088-4173-2013-00255-5
- Published electronically: June 6, 2013
- PDF | Request permission

## Abstract:

For any Thurston map with exactly four postcritical points, we present an algorithm to compute the Weil-Petersson boundary values of the corresponding Thurston pullback map. This procedure is carried out for the Thurston map $f(z)=\frac {3z^2}{2z^3+1}$ originally studied by Buff, et al. The dynamics of this boundary map are investigated and used to solve the analogue of Hubbard’s Twisted Rabbit problem for $f$.## References

- Laurent Bartholdi and Volodymyr Nekrashevych,
*Thurston equivalence of topological polynomials*, Acta Math.**197**(2006), no. 1, 1–51. MR**2285317**, DOI 10.1007/s11511-006-0007-3 - Laurent Bartholdi and Volodymyr V. Nekrashevych,
*Iterated monodromy groups of quadratic polynomials. I*, Groups Geom. Dyn.**2**(2008), no. 3, 309–336. MR**2415302**, DOI 10.4171/GGD/42 - Joan S. Birman,
*Braids, links, and mapping class groups*, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR**0375281** - Oleg Bogopolski,
*Introduction to group theory*, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. Translated, revised and expanded from the 2002 Russian original. MR**2396717**, DOI 10.4171/041 - Henk Bruin, Alexandra Kaffl, and Dierk Schleicher,
*Existence of quadratic Hubbard trees*, Fund. Math.**202**(2009), no. 3, 251–279. MR**2476617**, DOI 10.4064/fm202-3-4 - Xavier Buff, Adam Epstein, Sarah Koch, and Kevin Pilgrim,
*On Thurston’s pullback map*, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 561–583. MR**2508269**, DOI 10.1201/b10617-20 - J. W. Cannon, W. J. Floyd, and W. R. Parry,
*Finite subdivision rules*, Conform. Geom. Dyn.**5**(2001), 153–196. MR**1875951**, DOI 10.1090/S1088-4173-01-00055-8 - J. W. Cannon, W. J. Floyd, W. R. Parry, and K. M. Pilgrim,
*Nearly Euclidean Thurston maps*, Conform. Geom. Dyn.**16**(2012), 209–255. MR**2958932**, DOI 10.1090/S1088-4173-2012-00248-2 - Adrien Douady and John H. Hubbard,
*A proof of Thurston’s topological characterization of rational functions*, Acta Math.**171**(1993), no. 2, 263–297. MR**1251582**, DOI 10.1007/BF02392534 - Benson Farb and Dan Margalit,
*A primer on mapping class groups*, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR**2850125** - Morris W. Hirsch,
*Differential topology*, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR**0448362**, DOI 10.1007/978-1-4684-9449-5 - John Hamal Hubbard,
*Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1*, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR**2245223** - G. Kelsey. Mega-bimodules of topological polynomials: Sub-hyperbolicity and Thurston obstructions. http://www.math.uiuc.edu/~gkelsey2/files/Papers/GAKThesis.pdf, 2011.
- S. Koch. Teichmüller theory and critically finite endomorphisms.
*Submitted*. - S. Koch, K. Pilgrim, and N. Selinger. Pullback invariants of Thurston maps.
*Preprint*, 2012. - Serge Lang,
*Introduction to modular forms*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 222, Springer-Verlag, Berlin, 1995. With appendixes by D. Zagier and Walter Feit; Corrected reprint of the 1976 original. MR**1363488** - R. Lodge. Boundary values of the Thurston pullback map. 2012. PhD Thesis.
- Curt McMullen,
*Families of rational maps and iterative root-finding algorithms*, Ann. of Math. (2)**125**(1987), no. 3, 467–493. MR**890160**, DOI 10.2307/1971408 - D. Meyer. Unmating of rational maps, sufficient criteria and examples. arXiv:1110.6784v1, 2011.
- John Milnor,
*Pasting together Julia sets: a worked out example of mating*, Experiment. Math.**13**(2004), no. 1, 55–92. MR**2065568**, DOI 10.1080/10586458.2004.10504523 - John Milnor,
*On Lattès maps*, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR**2348953**, DOI 10.4171/011-1/1 - Volodymyr Nekrashevych,
*Self-similar groups*, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR**2162164**, DOI 10.1090/surv/117 - Volodymyr Nekrashevych,
*Combinatorics of polynomial iterations*, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 169–214. MR**2508257**, DOI 10.1201/b10617-5 - K. Pilgrim. An algebraic formulation of Thurston’s characterization of rational functions.
*To appear, special issue of Annales de la Faculte des Sciences de Toulouse*, 2010. - N. Selinger. Thurston’s pullback map on the augmented Teichmüller space and applications.
*Inventiones mathematicae*, pages 1–32, 2011. - Scott A. Wolpert,
*The Weil-Petersson metric geometry*, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 47–64. MR**2497791**, DOI 10.4171/055-1/2

## Bibliographic Information

**Russell Lodge**- Affiliation: Department of Mathematics, Jacobs University, Bremen, Germany
- MR Author ID: 1022713
- Email: r.lodge@jacobs-university.de
- Received by editor(s): November 30, 2012
- Published electronically: June 6, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**17**(2013), 77-118 - MSC (2010): Primary 37F20
- DOI: https://doi.org/10.1090/S1088-4173-2013-00255-5
- MathSciNet review: 3063048