Hyperbolic geometric versions of Schwarz’s lemma
HTML articles powered by AMS MathViewer
- by Dimitrios Betsakos
- Conform. Geom. Dyn. 17 (2013), 119-132
- DOI: https://doi.org/10.1090/S1088-4173-2013-00260-9
- Published electronically: November 1, 2013
- PDF | Request permission
Abstract:
Let $f$ be a holomorphic self-map of the unit disk $\mathbb {D}$. We prove monotonicity theorems which involve the hyperbolic area, the hyperbolic capacity, and the hyperbolic diameter of the images under $f$ of hyperbolic disks in $\mathbb {D}$. These theorems lead to distortion and modulus growth theorems that generalize the classical lemma of Schwarz and to geometric estimates for the density of the hyperbolic metric.References
- Glen D. Anderson, Mavina K. Vamanamurthy, and Matti K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD); A Wiley-Interscience Publication. MR 1462077
- Rauno Aulaskari and Huaihui Chen, Area inequality and $Q_p$ norm, J. Funct. Anal. 221 (2005), no. 1, 1–24. MR 2124895, DOI 10.1016/j.jfa.2004.12.007
- A. F. Beardon and D. Minda, A multi-point Schwarz-Pick lemma, J. Anal. Math. 92 (2004), 81–104. MR 2072742, DOI 10.1007/BF02787757
- A. F. Beardon and D. Minda, The hyperbolic metric and geometric function theory, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, pp. 9–56. MR 2492498
- Dimitrios Betsakos, Geometric versions of Schwarz’s lemma for quasiregular mappings, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1397–1407. MR 2748432, DOI 10.1090/S0002-9939-2010-10604-4
- Dimitrios Betsakos, Multi-point variations of the Schwarz lemma with diameter and width conditions, Proc. Amer. Math. Soc. 139 (2011), no. 11, 4041–4052. MR 2823049, DOI 10.1090/S0002-9939-2011-10954-7
- Dimitrios Betsakos and Stamatis Pouliasis, Versions of Schwarz’s lemma for condenser capacity and inner radius, Canad. Math. Bull. 56 (2013), no. 2, 241–250. MR 3043051, DOI 10.4153/CMB-2011-189-8
- Robert B. Burckel, Donald E. Marshall, David Minda, Pietro Poggi-Corradini, and Thomas J. Ransford, Area, capacity and diameter versions of Schwarz’s lemma, Conform. Geom. Dyn. 12 (2008), 133–152. MR 2434356, DOI 10.1090/S1088-4173-08-00181-1
- G. Cleanthous, Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear).
- V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable, Uspekhi Mat. Nauk 49 (1994), no. 1(295), 3–76 (Russian); English transl., Russian Math. Surveys 49 (1994), no. 1, 1–79. MR 1307130, DOI 10.1070/RM1994v049n01ABEH002002
- V. N. Dubinin, Geometric versions of the Schwarz lemma and symmetrization, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383 (2010), no. Analiticheskaya Teoriya Chisel i Teoriya FunktsiÄ. 25, 63–76, 205–206 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 178 (2011), no. 2, 150–157. MR 2749342, DOI 10.1007/s10958-011-0542-0
- V. N. Dubinin, On the preservation of conformal capacity under a mapping by meromorphic functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 392 (2011), no. Analiticheskaya Teoriya Chisel i Teoriya FunktsiÄ. 26, 67–73, 219 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 184 (2012), no. 6, 699–702. MR 2870219, DOI 10.1007/s10958-012-0891-3
- Alexander Fryntov and John Rossi, Hyperbolic symmetrization and an inequality of Dyn′kin, Entire functions in modern analysis (Tel-Aviv, 1997) Israel Math. Conf. Proc., vol. 15, Bar-Ilan Univ., Ramat Gan, 2001, pp. 103–115. MR 1890533
- F. W. Gehring, Inequalities for condensers, hyperbolic capacity, and extremal lengths, Michigan Math. J. 18 (1971), 1–20. MR 285697, DOI 10.1307/mmj/1029000582
- W. K. Hayman, Multivalent functions, 2nd ed., Cambridge Tracts in Mathematics, vol. 110, Cambridge University Press, Cambridge, 1994. MR 1310776, DOI 10.1017/CBO9780511526268
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486, DOI 10.1515/9781400882663
- Ch. Pommerenke, On hyperbolic capacity and hyperbolic length, Michigan Math. J. 10 (1963), 53–63. MR 148882, DOI 10.1307/mmj/1028998824
- Stamatis Pouliasis, Condenser capacity and meromorphic functions, Comput. Methods Funct. Theory 11 (2011), no. 1, 237–245. MR 2816955, DOI 10.1007/BF03321800
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- Jie Xiao, Isoperimetry for semilinear torsion problems in Riemannian two-manifolds, Adv. Math. 229 (2012), no. 4, 2379–2404. MR 2880225, DOI 10.1016/j.aim.2012.01.009
- Jie Xiao and Kehe Zhu, Volume integral means of holomorphic functions, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1455–1465. MR 2748439, DOI 10.1090/S0002-9939-2010-10797-9
- Shinji Yamashita, Length and area inequalities for the derivative of a bounded and holomorphic function, Bull. Austral. Math. Soc. 30 (1984), no. 3, 457–462. MR 766803, DOI 10.1017/S0004972700002173
Bibliographic Information
- Dimitrios Betsakos
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- MR Author ID: 618946
- Email: betsakos@math.auth.gr
- Received by editor(s): June 20, 2013
- Received by editor(s) in revised form: September 14, 2013
- Published electronically: November 1, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Conform. Geom. Dyn. 17 (2013), 119-132
- MSC (2010): Primary 30C80, 30C85, 30F45, 30H05
- DOI: https://doi.org/10.1090/S1088-4173-2013-00260-9
- MathSciNet review: 3126908