Local convexity properties of balls in Apollonian and Seittenranta’s metrics
HTML articles powered by AMS MathViewer
- by Riku Klén PDF
- Conform. Geom. Dyn. 17 (2013), 133-144 Request permission
Abstract:
We consider local convexity properties of balls in the Apollonian and Seittenranta’s metrics. Balls in the Apollonian metric are considered in the twice punctured space and starlike domains. Balls in Seittenranta’s metric are considered in the twice punctured space and in the punctured ball.References
- D. Barbilian, Einordnung von Lobayschewsky’s Massenbestimmung in einer gewissen allgemeinen Metrik der Jordansche Bereiche. Casopis Mathematiky a Fysiky 64 (1934–35), 182–183.
- A. F. Beardon, The Apollonian metric of a domain in $\textbf {R}^n$, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995) Springer, New York, 1998, pp. 91–108. MR 1488447
- F. W. Gehring and K. Hag, The Apollonian metric and quasiconformal mappings, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998) Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 143–163. MR 1759676, DOI 10.1090/conm/256/04003
- Peter A. Hästö, The Apollonian metric: uniformity and quasiconvexity, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 385–414. MR 1996444
- Peter A. Hästö, The Apollonian metric: quasi-isotropy and Seittenranta’s metric, Comput. Methods Funct. Theory 4 (2004), no. 2, 249–273. MR 2147384, DOI 10.1007/BF03321068
- Peter A. Hästö, Inequalities of generalized hyperbolic metrics, Rocky Mountain J. Math. 37 (2007), no. 1, 189–202. MR 2316443, DOI 10.1216/rmjm/1181069325
- Peter Hästö, Zair Ibragimov, and Henri Lindén, Isometries of relative metrics, Comput. Methods Funct. Theory 6 (2006), no. 1, 15–28. MR 2241030, DOI 10.1007/BF03321114
- Zair Shavkatovich Ibragimov, The apollonian metric, sets of constant width and Moebius modulus of ring domains, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–University of Michigan. MR 2703580
- Zair Ibragimov, On the Apollonian metric of domains in $\overline {\Bbb R}{}^n$, Complex Var. Theory Appl. 48 (2003), no. 10, 837–855. MR 2014392, DOI 10.1080/02781070310001015107
- Riku Klén, Local convexity properties of $j$-metric balls, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 281–293. MR 2386852
- Riku Klén, Local convexity properties of quasihyperbolic balls in punctured space, J. Math. Anal. Appl. 342 (2008), no. 1, 192–201. MR 2440790, DOI 10.1016/j.jmaa.2007.12.008
- Riku Klén, On hyperbolic type metrics, Ann. Acad. Sci. Fenn. Math. Diss. 152 (2009), 49. Dissertation, University of Turku, Turku, 2009. MR 2814337
- Riku Klén, Close-to-convexity of quasihyperbolic and $j$-metric balls, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 2, 493–501. MR 2731703, DOI 10.5186/aasfm.2010.3530
- Riku Klén, Antti Rasila, and Jarno Talponen, Quasihyperbolic geometry in Euclidean and Banach spaces, J. Anal. 18 (2010), 261–278. MR 2850645
- Olli Martio and Jussi Väisälä, Quasihyperbolic geodesics in convex domains II, Pure Appl. Math. Q. 7 (2011), no. 2, Special Issue: In honor of Frederick W. Gehring, 395–409. MR 2815380, DOI 10.4310/PAMQ.2011.v7.n2.a7
- Pasi Seittenranta, Möbius-invariant metrics, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 3, 511–533. MR 1656825, DOI 10.1017/S0305004198002904
- Antti Rasila and Jarno Talponen, Convexity properties of quasihyperbolic balls on Banach spaces, Ann. Acad. Sci. Fenn. Math. 37 (2012), no. 1, 215–228. MR 2920435, DOI 10.5186/aasfm.2012.3719
- Jussi Väisälä, Quasihyperbolic geometry of domains in Hilbert spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 559–578. MR 2337495
- Jussi Väisälä, Quasihyperbolic geometry of planar domains, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 2, 447–473. MR 2553806
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
- Matti Vuorinen, Metrics and quasiregular mappings, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, pp. 291–325. MR 2492508
- X. Wang, M. Huang, S. Ponnusamy, and Y. Chu, Hyperbolic distance, $\lambda$-Apollonian metric and John disks, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 371–380. MR 2337483
- M. Huang, S. Ponnusamy, X. Wang, and S. K. Sahoo, The Apollonian inner metric and uniform domains, Math. Nachr. 283 (2010), no. 9, 1277–1290. MR 2730493, DOI 10.1002/mana.200710092
Additional Information
- Riku Klén
- Affiliation: Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
- Email: riku.klen@utu.fi
- Published electronically: September 10, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Conform. Geom. Dyn. 17 (2013), 133-144
- MSC (2010): Primary 30C65, 51M10, 30F45
- DOI: https://doi.org/10.1090/S1088-4173-2013-00257-9
- MathSciNet review: 3126909