Totally disconnected Julia set for different classes of meromorphic functions
HTML articles powered by AMS MathViewer
- by P. Domínguez, A. Hernández and G. Sienra PDF
- Conform. Geom. Dyn. 18 (2014), 1-7 Request permission
Abstract:
We study a class of functions $\textbf {A}$ given by Epstein in Towers of finite type complex analytic maps, ProQuest LLC, Ann Arbor, MI, 1993, called finite-type maps. We extend a result related with the Julia set given by Baker, Domínguez in Some connectedness properties of Julia sets, Complex Variable Theory Appl. 41 (2000), 371–389, and Baker, Domínguez, and Herring in Dynamics of functions meromorphic outside a small set, Ergodic Theory Dynam. Systems 21 (2001), 647–672, to functions in class $\textbf {A}$.References
- I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146–153. MR 107015, DOI 10.1007/BF01181396
- I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. I, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 241–248. MR 1116639, DOI 10.1017/S014338570000612X
- I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. II. Examples of wandering domains, J. London Math. Soc. (2) 42 (1990), no. 2, 267–278. MR 1083445, DOI 10.1112/jlms/s2-42.2.267
- I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 603–618. MR 1145612, DOI 10.1017/S0143385700006386
- I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. IV. Critically finite functions, Results Math. 22 (1992), no. 3-4, 651–656. MR 1189754, DOI 10.1007/BF03323112
- I. N. Baker and P. Domínguez, Some connectedness properties of Julia sets, Complex Variables Theory Appl. 41 (2000), no. 4, 371–389. MR 1785150, DOI 10.1080/17476930008815263
- I. N. Baker, P. Domínguez, and M. E. Herring, Dynamics of functions meromorphic outside a small set, Ergodic Theory Dynam. Systems 21 (2001), no. 3, 647–672. MR 1836425, DOI 10.1017/S0143385701001328
- Andreas Bolsch, Repulsive periodic points of meromorphic functions, Complex Variables Theory Appl. 31 (1996), no. 1, 75–79. MR 1423240, DOI 10.1080/17476939608814947
- A. Bolsch, Iteration of meromorphic functions with countably many singularities. Dissertation, Berlin (1997).
- A. Bolsch, Periodic Fatou components of meromorphic functions, Bull. London Math. Soc. 31 (1999), no. 5, 543–555. MR 1703869, DOI 10.1112/S0024609399005950
- A. È. Erëmenko and M. Yu. Lyubich, Iterations of entire functions, Dokl. Akad. Nauk SSSR 279 (1984), no. 1, 25–27 (Russian). MR 769199
- A. È. Erëmenko and M. Yu. Lyubich, The dynamics of analytic transformations, Algebra i Analiz 1 (1989), no. 3, 1–70 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 3, 563–634. MR 1015124
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- Adam Lawrence Epstein, Towers of finite type complex analytic maps, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–City University of New York. MR 2690048
- A.L Epstein, Dynamics of finite type complex analytic maps. I. Global structure theory, Manuscript.
- M.E. Herring, An extension of the Julia-Fatou theory of iteration. PhD thesis (1994), Imperial College, London.
- P. Fatou, Sur l’itération des fonctions transcendantes Entières, Acta Math. 47 (1926), no. 4, 337–370 (French). MR 1555220, DOI 10.1007/BF02559517
- Linda Keen and Janina Kotus, Dynamics of the family $\lambda \tan z$, Conform. Geom. Dyn. 1 (1997), 28–57. MR 1463839, DOI 10.1090/S1088-4173-97-00017-9
- Lasse Rempe, Philip J. Rippon, and Gwyneth M. Stallard, Are Devaney hairs fast escaping?, J. Difference Equ. Appl. 16 (2010), no. 5-6, 739–762. MR 2675603, DOI 10.1080/10236190903282824
Additional Information
- P. Domínguez
- Affiliation: F.C. Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla; Av. San Claudio, Col. San Manuel, C.U., Puebla Pue., 72570, México
- Email: pdsoto@fcfm.buap.mx
- A. Hernández
- Affiliation: F.C. Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla; Av. San Claudio, Col. San Manuel, C.U., Puebla Pue., 72570, México
- Email: hralberto@hotmail.com
- G. Sienra
- Affiliation: Facultad de Ciencias, UNAM. Av. Universidad 3000, C.U. México, D.F., 04510, México.
- MR Author ID: 223466
- Email: gsl@dimnamica1.fciencias.unam.mx
- Received by editor(s): September 24, 2012
- Published electronically: January 24, 2014
- Additional Notes: The authors were supported by CONACYT projects numbers 128005 and 153850
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn. 18 (2014), 1-7
- MSC (2010): Primary 37F10; Secondary 30D05
- DOI: https://doi.org/10.1090/S1088-4173-2014-00258-6
- MathSciNet review: 3157720
Dedicated: In Memory of I. N. Baker