## Totally disconnected Julia set for different classes of meromorphic functions

HTML articles powered by AMS MathViewer

- by P. Domínguez, A. Hernández and G. Sienra PDF
- Conform. Geom. Dyn.
**18**(2014), 1-7 Request permission

## Abstract:

We study a class of functions $\textbf {A}$ given by Epstein in*Towers of finite type complex analytic maps*, ProQuest LLC, Ann Arbor, MI, 1993, called finite-type maps. We extend a result related with the Julia set given by Baker, Domínguez in

*Some connectedness properties of Julia sets*, Complex Variable Theory Appl.

**41**(2000), 371–389, and Baker, Domínguez, and Herring in

*Dynamics of functions meromorphic outside a small set*, Ergodic Theory Dynam. Systems

**21**(2001), 647–672, to functions in class $\textbf {A}$.

## References

- I. N. Baker,
*Fixpoints and iterates of entire functions*, Math. Z.**71**(1959), 146–153. MR**107015**, DOI 10.1007/BF01181396 - I. N. Baker, J. Kotus, and Lü Yinian,
*Iterates of meromorphic functions. I*, Ergodic Theory Dynam. Systems**11**(1991), no. 2, 241–248. MR**1116639**, DOI 10.1017/S014338570000612X - I. N. Baker, J. Kotus, and Yi Nian Lü,
*Iterates of meromorphic functions. II. Examples of wandering domains*, J. London Math. Soc. (2)**42**(1990), no. 2, 267–278. MR**1083445**, DOI 10.1112/jlms/s2-42.2.267 - I. N. Baker, J. Kotus, and Yi Nian Lü,
*Iterates of meromorphic functions. III. Preperiodic domains*, Ergodic Theory Dynam. Systems**11**(1991), no. 4, 603–618. MR**1145612**, DOI 10.1017/S0143385700006386 - I. N. Baker, J. Kotus, and Lü Yinian,
*Iterates of meromorphic functions. IV. Critically finite functions*, Results Math.**22**(1992), no. 3-4, 651–656. MR**1189754**, DOI 10.1007/BF03323112 - I. N. Baker and P. Domínguez,
*Some connectedness properties of Julia sets*, Complex Variables Theory Appl.**41**(2000), no. 4, 371–389. MR**1785150**, DOI 10.1080/17476930008815263 - I. N. Baker, P. Domínguez, and M. E. Herring,
*Dynamics of functions meromorphic outside a small set*, Ergodic Theory Dynam. Systems**21**(2001), no. 3, 647–672. MR**1836425**, DOI 10.1017/S0143385701001328 - Andreas Bolsch,
*Repulsive periodic points of meromorphic functions*, Complex Variables Theory Appl.**31**(1996), no. 1, 75–79. MR**1423240**, DOI 10.1080/17476939608814947 - A. Bolsch,
*Iteration of meromorphic functions with countably many singularities*. Dissertation, Berlin (1997). - A. Bolsch,
*Periodic Fatou components of meromorphic functions*, Bull. London Math. Soc.**31**(1999), no. 5, 543–555. MR**1703869**, DOI 10.1112/S0024609399005950 - A. È. Erëmenko and M. Yu. Lyubich,
*Iterations of entire functions*, Dokl. Akad. Nauk SSSR**279**(1984), no. 1, 25–27 (Russian). MR**769199** - A. È. Erëmenko and M. Yu. Lyubich,
*The dynamics of analytic transformations*, Algebra i Analiz**1**(1989), no. 3, 1–70 (Russian); English transl., Leningrad Math. J.**1**(1990), no. 3, 563–634. MR**1015124** - A. È. Erëmenko and M. Yu. Lyubich,
*Dynamical properties of some classes of entire functions*, Ann. Inst. Fourier (Grenoble)**42**(1992), no. 4, 989–1020 (English, with English and French summaries). MR**1196102**, DOI 10.5802/aif.1318 - Adam Lawrence Epstein,
*Towers of finite type complex analytic maps*, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–City University of New York. MR**2690048** - A.L Epstein,
*Dynamics of finite type complex analytic maps*. I. Global structure theory, Manuscript. - M.E. Herring,
*An extension of the Julia-Fatou theory of iteration*. PhD thesis (1994), Imperial College, London. - P. Fatou,
*Sur l’itération des fonctions transcendantes Entières*, Acta Math.**47**(1926), no. 4, 337–370 (French). MR**1555220**, DOI 10.1007/BF02559517 - Linda Keen and Janina Kotus,
*Dynamics of the family $\lambda \tan z$*, Conform. Geom. Dyn.**1**(1997), 28–57. MR**1463839**, DOI 10.1090/S1088-4173-97-00017-9 - Lasse Rempe, Philip J. Rippon, and Gwyneth M. Stallard,
*Are Devaney hairs fast escaping?*, J. Difference Equ. Appl.**16**(2010), no. 5-6, 739–762. MR**2675603**, DOI 10.1080/10236190903282824

## Additional Information

**P. Domínguez**- Affiliation: F.C. Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla; Av. San Claudio, Col. San Manuel, C.U., Puebla Pue., 72570, México
- Email: pdsoto@fcfm.buap.mx
**A. Hernández**- Affiliation: F.C. Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla; Av. San Claudio, Col. San Manuel, C.U., Puebla Pue., 72570, México
- Email: hralberto@hotmail.com
**G. Sienra**- Affiliation: Facultad de Ciencias, UNAM. Av. Universidad 3000, C.U. México, D.F., 04510, México.
- MR Author ID: 223466
- Email: gsl@dimnamica1.fciencias.unam.mx
- Received by editor(s): September 24, 2012
- Published electronically: January 24, 2014
- Additional Notes: The authors were supported by CONACYT projects numbers 128005 and 153850
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Conform. Geom. Dyn.
**18**(2014), 1-7 - MSC (2010): Primary 37F10; Secondary 30D05
- DOI: https://doi.org/10.1090/S1088-4173-2014-00258-6
- MathSciNet review: 3157720

Dedicated: In Memory of I. N. Baker