Limit functions of discrete dynamical systems
HTML articles powered by AMS MathViewer
- by H.-P. Beise, T. Meyrath and J. Müller PDF
- Conform. Geom. Dyn. 18 (2014), 56-64 Request permission
Abstract:
In the theory of dynamical systems, the notion of $\omega$-limit sets of points is classical. In this paper, the existence of limit functions on subsets of the underlying space is treated. It is shown that in the case of topologically mixing systems on appropriate metric spaces $(X,d)$, the existence of at least one limit function on a compact subset $A$ of $X$ implies the existence of plenty of them on many supersets of $A$. On the other hand, such sets necessarily have to be small in various respects. The results for general discrete systems are applied in the case of Julia sets of rational functions and in particular in the case of the existence of Siegel disks.References
- Ethan Akin, Lectures on Cantor and Mycielski sets for dynamical systems, Chapel Hill Ergodic Theory Workshops, Contemp. Math., vol. 356, Amer. Math. Soc., Providence, RI, 2004, pp. 21–79. MR 2087588, DOI 10.1090/conm/356/06496
- Peter Beise and Jürgen Müller, Limit functions of iterates of entire functions on parts of the Julia set, Proc. Amer. Math. Soc. 141 (2013), no. 11, 3929–3933. MR 3091783, DOI 10.1090/S0002-9939-2013-11720-X
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI 10.1007/BF02591353
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, DOI 10.1007/BF02584744
- Karl-G. Grosse-Erdmann and Alfredo Peris Manguillot, Linear chaos, Universitext, Springer, London, 2011. MR 2919812, DOI 10.1007/978-1-4471-2170-1
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Steven P. Lalley, Brownian motion and the equilibrium measure on the Julia set of a rational mapping, Ann. Probab. 20 (1992), no. 4, 1932–1967. MR 1188049
- Artur Oscar Lopes, Equilibrium measures for rational maps, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 393–399. MR 863202, DOI 10.1017/S0143385700003576
- M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, DOI 10.1017/S0143385700002030
- M. Yu. Lyubich, Generic behavior of trajectories of the exponential function, Uspekhi Mat. Nauk 41 (1986), no. 2(248), 199–200 (Russian). MR 842176
- M. Yu. Lyubich, The measurable dynamics of the exponential, Sibirsk. Mat. Zh. 28 (1987), no. 5, 111–127 (Russian). MR 924986
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- Yûsuke Okuyama and Małgorzata Stawiska, Potential theory and a characterization of polynomials in complex dynamics, Conform. Geom. Dyn. 15 (2011), 152–159. MR 2846305, DOI 10.1090/S1088-4173-2011-00230-X
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Mary Rees, The exponential map is not recurrent, Math. Z. 191 (1986), no. 4, 593–598. MR 832817, DOI 10.1007/BF01162349
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Dierk Schleicher, Dynamics of entire functions, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 295–339. MR 2648691, DOI 10.1007/978-3-642-13171-4_{5}
- Norbert Steinmetz, Rational iteration, De Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235, DOI 10.1515/9783110889314
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
Additional Information
- H.-P. Beise
- Affiliation: Department of Mathematics, University of Trier, 54286 Trier, Germany
- Email: pbeise@gmx.de
- T. Meyrath
- Affiliation: University of Luxembourg, Faculte des Sciences 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
- Email: thierry.meyrath@uni.lu
- J. Müller
- Affiliation: University of Trier, Mathematik, Fachbereich IV, 54286 Trier, Germany
- ORCID: 0000-0002-5872-0129
- Email: jmueller@uni-trier.de
- Received by editor(s): May 22, 2013
- Received by editor(s) in revised form: November 20, 2013, December 30, 2013, and December 31, 2013
- Published electronically: April 1, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn. 18 (2014), 56-64
- MSC (2010): Primary 37A25, 37F10, 30K99
- DOI: https://doi.org/10.1090/S1088-4173-2014-00264-1
- MathSciNet review: 3187620