Intrinsic circle domains
HTML articles powered by AMS MathViewer
- by Edward Crane
- Conform. Geom. Dyn. 18 (2014), 65-84
- DOI: https://doi.org/10.1090/S1088-4173-2014-00262-8
- Published electronically: May 1, 2014
- PDF | Request permission
Abstract:
Using quasiconformal mappings, we prove that any Riemann surface of finite connectivity and finite genus is conformally equivalent to an intrinsic circle domain $\Omega$ in a compact Riemann surface $S$. This means that each connected component $B$ of $S\setminus \Omega$ is either a point or a closed geometric disc with respect to the complete constant curvature conformal metric of the Riemann surface $(\Omega \cup B)$. Moreover, the pair $(\Omega , S)$ is unique up to conformal isomorphisms. We give a generalization to countably infinite connectivity. Finally, we show how one can compute numerical approximations to intrinsic circle domains using circle packings and conformal welding.References
- John R. Akeroyd, Kristi Karber, and Alexander Yu. Solynin, Minimal kernels, quadrature identities and proportional harmonic measures, Rocky Mountain J. Math. 36 (2006), no. 6, 1819–1844. MR 2305631, DOI 10.1216/rmjm/1181069346
- Tom Carroll and Joaquim Ortega-Cerdà, The univalent Bloch-Landau constant, harmonic symmetry and conformal glueing, J. Math. Pures Appl. (9) 92 (2009), no. 4, 396–406 (English, with English and French summaries). MR 2569185, DOI 10.1016/j.matpur.2009.05.008
- Edward Crane, A bound for Smale’s mean value conjecture for complex polynomials, Bull. Lond. Math. Soc. 39 (2007), no. 5, 781–791. MR 2365227, DOI 10.1112/blms/bdm063
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039, DOI 10.1090/mmono/026
- Zheng-Xu He and Oded Schramm, Fixed points, Koebe uniformization and circle packings, Ann. of Math. (2) 137 (1993), no. 2, 369–406. MR 1207210, DOI 10.2307/2946541
- Joaquim Ortega-Cerdà and Bharti Pridhnani, The Pólya-Tchebotaröv problem, Harmonic analysis and partial differential equations, Contemp. Math., vol. 505, Amer. Math. Soc., Providence, RI, 2010, pp. 153–170. MR 2664566, DOI 10.1090/conm/505/09921
- Burt Rodin and Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), no. 2, 349–360. MR 906396
- Oded Schramm, Transboundary extremal length, J. Anal. Math. 66 (1995), 307–329. MR 1370355, DOI 10.1007/BF02788827
- Alexander Yu. Solynin, Quadratic differentials and weighted graphs on compact surfaces, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, pp. 473–505. MR 2724628, DOI 10.1007/978-3-7643-9906-1_{2}5
- Kenneth Stephenson, Introduction to circle packing, Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions. MR 2131318
- K. Stephenson et al., CirclePack, software for circle packing, www.math.utk.edu/~kens/circlepack.
- G. Brock Williams, Discrete conformal welding, Indiana Univ. Math. J. 53 (2004), no. 3, 765–804. MR 2086700, DOI 10.1512/iumj.2004.53.2392
Bibliographic Information
- Edward Crane
- Affiliation: Heilbronn Institute for Mathematical Research, School of Mathematics, University of Bristol, BS8 1TW, United Kingdom
- Email: edward.crane@bristol.ac.uk
- Received by editor(s): March 27, 2013
- Published electronically: May 1, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn. 18 (2014), 65-84
- MSC (2010): Primary 30C20; Secondary 30F45, 30C30, 52C26
- DOI: https://doi.org/10.1090/S1088-4173-2014-00262-8
- MathSciNet review: 3199397