## Intrinsic circle domains

HTML articles powered by AMS MathViewer

- by Edward Crane
- Conform. Geom. Dyn.
**18**(2014), 65-84 - DOI: https://doi.org/10.1090/S1088-4173-2014-00262-8
- Published electronically: May 1, 2014
- PDF | Request permission

## Abstract:

Using quasiconformal mappings, we prove that any Riemann surface of finite connectivity and finite genus is conformally equivalent to an intrinsic circle domain $\Omega$ in a compact Riemann surface $S$. This means that each connected component $B$ of $S\setminus \Omega$ is either a point or a closed geometric disc with respect to the complete constant curvature conformal metric of the Riemann surface $(\Omega \cup B)$. Moreover, the pair $(\Omega , S)$ is unique up to conformal isomorphisms. We give a generalization to countably infinite connectivity. Finally, we show how one can compute numerical approximations to intrinsic circle domains using circle packings and conformal welding.## References

- John R. Akeroyd, Kristi Karber, and Alexander Yu. Solynin,
*Minimal kernels, quadrature identities and proportional harmonic measures*, Rocky Mountain J. Math.**36**(2006), no. 6, 1819–1844. MR**2305631**, DOI 10.1216/rmjm/1181069346 - Tom Carroll and Joaquim Ortega-Cerdà,
*The univalent Bloch-Landau constant, harmonic symmetry and conformal glueing*, J. Math. Pures Appl. (9)**92**(2009), no. 4, 396–406 (English, with English and French summaries). MR**2569185**, DOI 10.1016/j.matpur.2009.05.008 - Edward Crane,
*A bound for Smale’s mean value conjecture for complex polynomials*, Bull. Lond. Math. Soc.**39**(2007), no. 5, 781–791. MR**2365227**, DOI 10.1112/blms/bdm063 - G. M. Goluzin,
*Geometric theory of functions of a complex variable*, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR**0247039**, DOI 10.1090/mmono/026 - Zheng-Xu He and Oded Schramm,
*Fixed points, Koebe uniformization and circle packings*, Ann. of Math. (2)**137**(1993), no. 2, 369–406. MR**1207210**, DOI 10.2307/2946541 - Joaquim Ortega-Cerdà and Bharti Pridhnani,
*The Pólya-Tchebotaröv problem*, Harmonic analysis and partial differential equations, Contemp. Math., vol. 505, Amer. Math. Soc., Providence, RI, 2010, pp. 153–170. MR**2664566**, DOI 10.1090/conm/505/09921 - Burt Rodin and Dennis Sullivan,
*The convergence of circle packings to the Riemann mapping*, J. Differential Geom.**26**(1987), no. 2, 349–360. MR**906396** - Oded Schramm,
*Transboundary extremal length*, J. Anal. Math.**66**(1995), 307–329. MR**1370355**, DOI 10.1007/BF02788827 - Alexander Yu. Solynin,
*Quadratic differentials and weighted graphs on compact surfaces*, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, pp. 473–505. MR**2724628**, DOI 10.1007/978-3-7643-9906-1_{2}5 - Kenneth Stephenson,
*Introduction to circle packing*, Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions. MR**2131318** - K. Stephenson et al., CirclePack, software for circle packing, www.math.utk.edu/~kens/circlepack.
- G. Brock Williams,
*Discrete conformal welding*, Indiana Univ. Math. J.**53**(2004), no. 3, 765–804. MR**2086700**, DOI 10.1512/iumj.2004.53.2392

## Bibliographic Information

**Edward Crane**- Affiliation: Heilbronn Institute for Mathematical Research, School of Mathematics, University of Bristol, BS8 1TW, United Kingdom
- Email: edward.crane@bristol.ac.uk
- Received by editor(s): March 27, 2013
- Published electronically: May 1, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**18**(2014), 65-84 - MSC (2010): Primary 30C20; Secondary 30F45, 30C30, 52C26
- DOI: https://doi.org/10.1090/S1088-4173-2014-00262-8
- MathSciNet review: 3199397