Bi-Lipschitz embedding of projective metrics
Author:
Leonid V. Kovalev
Journal:
Conform. Geom. Dyn. 18 (2014), 110-118
MSC (2010):
Primary 30L05; Secondary 30C65, 51M10
DOI:
https://doi.org/10.1090/S1088-4173-2014-00266-5
Published electronically:
June 6, 2014
MathSciNet review:
3215428
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.
- Ralph Alexander, Planes for which the lines are the shortest paths between points, Illinois J. Math. 22 (1978), no. 2, 177–190. MR 490820
- Juan C. Álvarez Paiva, Hilbert’s fourth problem in two dimensions, MASS selecta, Amer. Math. Soc., Providence, RI, 2003, pp. 165–183. MR 2027175
- R. V. Ambartzumian, Combinatorial solution of the Buffon-Sylvester problem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 25–31. MR 372939, DOI https://doi.org/10.1007/BF00533183
- Yves Benoist, Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 181–237 (French, with English summary). MR 2010741, DOI https://doi.org/10.1007/s10240-003-0012-4
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI https://doi.org/10.1007/BF02392360
- Herbert Busemann, Geometries in which the planes minimize area, Ann. Mat. Pura Appl. (4) 55 (1961), 171–189. MR 143155, DOI https://doi.org/10.1007/BF02412083
- Herbert Busemann, Problem IV: Desarguesian spaces, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R. I., 1976, pp. 131–141. Proc. Sympos. Pure Math., Vol. XXVIII. MR 0430935
- Herbert Busemann and Paul J. Kelly, Projective geometry and projective metrics, Academic Press Inc., New York, N. Y., 1953. MR 0054980
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917
- Tomi J. Laakso, Plane with $A_\infty $-weighted metric not bi-Lipschitz embeddable to ${\Bbb R}^N$, Bull. London Math. Soc. 34 (2002), no. 6, 667–676. MR 1924353, DOI https://doi.org/10.1112/S0024609302001200
- Anders Karlsson and Guennadi A. Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. (2) 48 (2002), no. 1-2, 73–89. MR 1923418
- Leonid V. Kovalev, Quasiconformal geometry of monotone mappings, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 391–408. MR 2340234, DOI https://doi.org/10.1112/jlms/jdm008
- Leonid Kovalev, Diego Maldonado, and Jang-Mei Wu, Doubling measures, monotonicity, and quasiconformality, Math. Z. 257 (2007), no. 3, 525–545. MR 2328811, DOI https://doi.org/10.1007/s00209-007-0132-5
- Athanase Papadopoulos, On Hilbert’s fourth problem, available at arXiv:1312.3172.
- Aleksei Vasil′evich Pogorelov, Hilbert’s fourth problem, V. H. Winston & Sons, Washington, D.C.; A Halsted Press Book, John Wiley & Sons, New York-Toronto, Ont.-London, 1979. Translated by Richard A. Silverman; Scripta Series in Mathematics. MR 550440
- R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. MR 1451876
- Rolf Schneider and Wolfgang Weil, Stochastic and integral geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008. MR 2455326
- Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $A_\infty $-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337–410. MR 1402671, DOI https://doi.org/10.4171/RMI/201
- Z. I. Szabó, Hilbert’s fourth problem. I, Adv. in Math. 59 (1986), no. 3, 185–301. MR 835025, DOI https://doi.org/10.1016/0001-8708%2886%2990056-3
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30L05, 30C65, 51M10
Retrieve articles in all journals with MSC (2010): 30L05, 30C65, 51M10
Additional Information
Leonid V. Kovalev
Affiliation:
215 Carnegie, Mathematics Department, Syracuse University, Syracuse, New York 13244
MR Author ID:
641917
Email:
lvkovale@syr.edu
Keywords:
bi-Lipschitz embedding,
projective metric,
quasisymmetric map
Received by editor(s):
December 30, 2013
Received by editor(s) in revised form:
March 15, 2014
Published electronically:
June 6, 2014
Additional Notes:
This work was supported by the NSF grant DMS-0968756
Article copyright:
© Copyright 2014
American Mathematical Society