Bi-Lipschitz embedding of projective metrics
HTML articles powered by AMS MathViewer
- by Leonid V. Kovalev
- Conform. Geom. Dyn. 18 (2014), 110-118
- DOI: https://doi.org/10.1090/S1088-4173-2014-00266-5
- Published electronically: June 6, 2014
- PDF | Request permission
Abstract:
We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.References
- Ralph Alexander, Planes for which the lines are the shortest paths between points, Illinois J. Math. 22 (1978), no. 2, 177–190. MR 490820
- Juan C. Álvarez Paiva, Hilbert’s fourth problem in two dimensions, MASS selecta, Amer. Math. Soc., Providence, RI, 2003, pp. 165–183. MR 2027175
- R. V. Ambartzumian, Combinatorial solution of the Buffon-Sylvester problem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 25–31. MR 372939, DOI 10.1007/BF00533183
- Yves Benoist, Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 181–237 (French, with English summary). MR 2010741, DOI 10.1007/s10240-003-0012-4
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- Herbert Busemann, Geometries in which the planes minimize area, Ann. Mat. Pura Appl. (4) 55 (1961), 171–189. MR 143155, DOI 10.1007/BF02412083
- Herbert Busemann, Problem IV: Desarguesian spaces, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Proc. Sympos. Pure Math., Vol. XXVIII, Amer. Math. Soc., Providence, R.I., 1976, pp. 131–141. MR 0430935
- Herbert Busemann and Paul J. Kelly, Projective geometry and projective metrics, Academic Press, Inc., New York, N.Y., 1953. MR 0054980
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Tomi J. Laakso, Plane with $A_\infty$-weighted metric not bi-Lipschitz embeddable to ${\Bbb R}^N$, Bull. London Math. Soc. 34 (2002), no. 6, 667–676. MR 1924353, DOI 10.1112/S0024609302001200
- Anders Karlsson and Guennadi A. Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. (2) 48 (2002), no. 1-2, 73–89. MR 1923418
- Leonid V. Kovalev, Quasiconformal geometry of monotone mappings, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 391–408. MR 2340234, DOI 10.1112/jlms/jdm008
- Leonid Kovalev, Diego Maldonado, and Jang-Mei Wu, Doubling measures, monotonicity, and quasiconformality, Math. Z. 257 (2007), no. 3, 525–545. MR 2328811, DOI 10.1007/s00209-007-0132-5
- Athanase Papadopoulos, On Hilbert’s fourth problem, available at arXiv:1312.3172., DOI 10.4171/147-1/15
- Aleksei Vasil′evich Pogorelov, Hilbert’s fourth problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; John Wiley & Sons, New York-Toronto-London, 1979. Translated by Richard A. Silverman. MR 550440
- R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. MR 1451876
- Rolf Schneider and Wolfgang Weil, Stochastic and integral geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008. MR 2455326, DOI 10.1007/978-3-540-78859-1
- Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $A_\infty$-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337–410. MR 1402671, DOI 10.4171/RMI/201
- Z. I. Szabó, Hilbert’s fourth problem. I, Adv. in Math. 59 (1986), no. 3, 185–301. MR 835025, DOI 10.1016/0001-8708(86)90056-3
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
Bibliographic Information
- Leonid V. Kovalev
- Affiliation: 215 Carnegie, Mathematics Department, Syracuse University, Syracuse, New York 13244
- MR Author ID: 641917
- Email: lvkovale@syr.edu
- Received by editor(s): December 30, 2013
- Received by editor(s) in revised form: March 15, 2014
- Published electronically: June 6, 2014
- Additional Notes: This work was supported by the NSF grant DMS-0968756
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn. 18 (2014), 110-118
- MSC (2010): Primary 30L05; Secondary 30C65, 51M10
- DOI: https://doi.org/10.1090/S1088-4173-2014-00266-5
- MathSciNet review: 3215428