Classification of subdivision rules for geometric groups of low dimension
HTML articles powered by AMS MathViewer
- by Brian Rushton
- Conform. Geom. Dyn. 18 (2014), 171-191
- DOI: https://doi.org/10.1090/S1088-4173-2014-00269-0
- Published electronically: October 7, 2014
- PDF | Request permission
Abstract:
Subdivision rules create sequences of nested cell structures on CW-complexes, and they frequently arise from groups. In this paper, we develop several tools for classifying subdivision rules. We give a criterion for a subdivision rule to represent a Gromov hyperbolic space, and show that a subdivision rule for a hyperbolic group determines the Gromov boundary. We give a criterion for a subdivision rule to represent a Euclidean space of dimension less than 4. We also show that Nil and Sol geometries cannot be modeled by subdivision rules. We use these tools and previous theorems to classify the geometry of subdivision rules for low-dimensional geometric groups by the combinatorial properties of their subdivision rules.References
- Roger C. Alperin, Solvable groups of exponential growth and HNN extensions, Groups—Korea ’98 (Pusan), de Gruyter, Berlin, 2000, pp. 1–5. MR 1751083
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Finite subdivision rules, Conform. Geom. Dyn. 5 (2001), 153–196. MR 1875951, DOI 10.1090/S1088-4173-01-00055-8
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI 10.1007/BF02398434
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 265–304. MR 1724092
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. I, Conform. Geom. Dyn. 10 (2006), 63–99. MR 2218641, DOI 10.1090/S1088-4173-06-00126-3
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. II, Conform. Geom. Dyn. 10 (2006), 326–354. MR 2268483, DOI 10.1090/S1088-4173-06-00127-5
- J. W. Cannon and E. L. Swenson, Recognizing constant curvature discrete groups in dimension $3$, Trans. Amer. Math. Soc. 350 (1998), no. 2, 809–849. MR 1458317, DOI 10.1090/S0002-9947-98-02107-2
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Conformal modulus: the graph paper invariant or the conformal shape of an algorithm, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 71–102. MR 1714840
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR 1786869
- Cornelia Drutu and Michael Kapovich Preface, Lectures on geometric group theory, (2013), A book to be published in the AMS series “Colloquium Publications” in 2015.
- D. Epstein, M.S. Paterson, J.W. Cannon, D.F. Holt, S.V. Levy, and W. P. Thurston, Word processing in groups, AK Peters, Ltd., 1992.
- Benson Farb and Lee Mosher, Problems on the geometry of finitely generated solvable groups, Crystallographic groups and their generalizations (Kortrijk, 1999) Contemp. Math., vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 121–134. MR 1796128, DOI 10.1090/conm/262/04170
- F. T. Farrell and L. E. Jones, The lower algebraic $K$-theory of virtually infinite cyclic groups, $K$-Theory 9 (1995), no. 1, 13–30. MR 1340838, DOI 10.1007/BF00965457
- Eric M. Freden, Negatively curved groups have the convergence property. I, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 333–348. MR 1346817
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- Mikhael Gromov, Infinite groups as geometric objects, Proceedings of the International Congress of Mathematicians, vol. 1, 1984, p. 2.
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001) Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39–93. MR 1921706, DOI 10.1090/conm/296/05068
- Avinoam Mann, How groups grow, London Mathematical Society Lecture Note Series, vol. 395, Cambridge University Press, Cambridge, 2012. MR 2894945
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159 (2002).
- —, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109 (2003).
- Brian Rushton, Constructing subdivision rules from alternating links, Conform. Geom. Dyn. 14 (2010), 1–13. MR 2579862, DOI 10.1090/S1088-4173-09-00205-7
- Brian Rushton, Constructing subdivision rules from polyhedra with identifications, Algebr. Geom. Topol. 12 (2012), no. 4, 1961–1992. MR 2994827, DOI 10.2140/agt.2012.12.1961
- Brian Rushton, A finite subdivision rule for the n-dimensional torus, Geometriae Dedicata (2012), 1–12 (English).
- Kenneth Stephenson, Introduction to circle packing, Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions. MR 2131318
- Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1–54. MR 961162, DOI 10.1515/crll.1988.391.1
- Jussi Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005), no. 3, 187–231. MR 2164775, DOI 10.1016/j.exmath.2005.01.010
Bibliographic Information
- Brian Rushton
- Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
- Email: brian.rushton@temple.edu
- Received by editor(s): April 7, 2014
- Received by editor(s) in revised form: May 1, 2014, May 19, 2014, and June 22, 2014
- Published electronically: October 7, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn. 18 (2014), 171-191
- MSC (2010): Primary 20F65, 05C25, 57M50
- DOI: https://doi.org/10.1090/S1088-4173-2014-00269-0
- MathSciNet review: 3266238