Dynamics of hyperbolic iwips
HTML articles powered by AMS MathViewer
- by Caglar Uyanik
- Conform. Geom. Dyn. 18 (2014), 192-216
- DOI: https://doi.org/10.1090/S1088-4173-2014-00270-7
- Published electronically: October 23, 2014
- PDF | Request permission
Abstract:
We present two proofs of the fact, originally due to Reiner Martin, that any fully irreducible hyperbolic element of $Out(F_N)$ acts on the projectivized space of geodesic currents $\mathbb {P}Curr(F_N)$ with uniform north-south dynamics. The first proof, using purely train-track methods, provides an elaborated and corrected version of Reiner Martinâs original approach. The second proof uses the geometric intersection form of Kapovich and Lustig and relies on unique ergodicity results from symbolic dynamics.References
- M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), no. 1, 85â101. MR 1152226, DOI 10.4310/jdg/1214447806
- M. Bestvina and M. Feighn, Outer limits, 1993, http://andromeda.rutgers.edu/~feighn/papers/outer.pdf.
- Mladen Bestvina and Mark Feighn, A hyperbolic $\textrm {Out}(F_n)$-complex, Groups Geom. Dyn. 4 (2010), no. 1, 31â58. MR 2566300, DOI 10.4171/GGD/74
- M. Bestvina, M. Feighn, and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997), no. 2, 215â244. MR 1445386, DOI 10.1007/PL00001618
- Mladen Bestvina, Mark Feighn, and Michael Handel, The Tits alternative for $\textrm {Out}(F_n)$. I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151 (2000), no. 2, 517â623. MR 1765705, DOI 10.2307/121043
- Mladen Bestvina and Michael Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), no. 1, 1â51. MR 1147956, DOI 10.2307/2946562
- P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000), no. 5, 1071â1089. MR 1800064, DOI 10.1007/PL00001647
- Matt Clay and Alexandra Pettet, Current twisting and nonsingular matrices, Comment. Math. Helv. 87 (2012), no. 2, 385â407. MR 2914853, DOI 10.4171/CMH/257
- Marshall M. Cohen and Martin Lustig, Very small group actions on $\textbf {R}$-trees and Dehn twist automorphisms, Topology 34 (1995), no. 3, 575â617. MR 1341810, DOI 10.1016/0040-9383(94)00038-M
- Daryl Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987), no. 2, 453â456. MR 916179, DOI 10.1016/0021-8693(87)90229-8
- Thierry Coulbois, Arnaud Hilion, and Martin Lustig, $\Bbb R$-trees and laminations for free groups. I. Algebraic laminations, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 723â736. MR 2456901, DOI 10.1112/jlms/jdn052
- Thierry Coulbois, Arnaud Hilion, and Martin Lustig, $\Bbb R$-trees and laminations for free groups. II. The dual lamination of an $\Bbb R$-tree, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 737â754. MR 2456902, DOI 10.1112/jlms/jdn053
- Thierry Coulbois, Arnaud Hilion, and Martin Lustig, $\Bbb R$-trees and laminations for free groups. III. Currents and dual $\Bbb R$-tree metrics, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 755â766. MR 2456903, DOI 10.1112/jlms/jdn054
- Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91â119. MR 830040, DOI 10.1007/BF01388734
- Ursula HamenstĂ€dt, Lines of minima in outer space, Duke Math. J. 163 (2014), no. 4, 733â776. MR 3178431, DOI 10.1215/00127094-2429807
- Nikolai V. Ivanov, Subgroups of TeichmĂŒller modular groups, Translations of Mathematical Monographs, vol. 115, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose and revised by the author. MR 1195787, DOI 10.1090/mmono/115
- Ilya Kapovich, The frequency space of a free group, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 939â969. MR 2197815, DOI 10.1142/S0218196705002700
- Ilya Kapovich, Currents on free groups, Topological and asymptotic aspects of group theory, Contemp. Math., vol. 394, Amer. Math. Soc., Providence, RI, 2006, pp. 149â176. MR 2216713, DOI 10.1090/conm/394/07441
- Ilya Kapovich, Algorithmic detectability of iwip automorphisms, Bull. Lond. Math. Soc. 46 (2014), no. 2, 279â290. MR 3194747, DOI 10.1112/blms/bdt093
- Ilya Kapovich and Martin Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009), no. 3, 1805â1833. MR 2496058, DOI 10.2140/gt.2009.13.1805
- Ilya Kapovich and Martin Lustig, Intersection form, laminations and currents on free groups, Geom. Funct. Anal. 19 (2010), no. 5, 1426â1467. MR 2585579, DOI 10.1007/s00039-009-0041-3
- Ilya Kapovich and Martin Lustig, Ping-pong and outer space, J. Topol. Anal. 2 (2010), no. 2, 173â201. MR 2652906, DOI 10.1142/S1793525310000318
- I. Kapovich and M. Lustig, Invariant laminations for irreducible automorphisms of free groups, The Quarterly Journal of Mathematics, 2014.
- Gilbert Levitt and Martin Lustig, Irreducible automorphisms of $F_n$ have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003), no. 1, 59â72. MR 1955207, DOI 10.1017/S1474748003000033
- M. Lustig, Structure and conjugacy for automorphisms of free groups. I MPI-Bonn preprint series 2000, No. 241, 2000.
- Reiner Martin, Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)âUniversity of California, Los Angeles. MR 2693216
- Pierre Michel, Stricte ergodicitĂ© dâensembles minimaux de substitution, C. R. Acad. Sci. Paris SĂ©r. A 278 (1974), 811â813 (French). MR 362276
- Martine QueffĂ©lec, Substitution dynamical systemsâspectral analysis, 2nd ed., Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 2010. MR 2590264, DOI 10.1007/978-3-642-11212-6
- E. Seneta, Non-negative matrices, Halsted Press [John Wiley & Sons], New York, 1973. An introduction to theory and applications. MR 0389944
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417â431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6
- C. Uyanik, Generalized north-south dynamics on the space of geodesic currents, Geometriae Dedicata, pages 1â20, 2014.
Bibliographic Information
- Caglar Uyanik
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- Email: cuyanik2@illinois.edu
- Received by editor(s): March 16, 2014
- Received by editor(s) in revised form: May 24, 2014, and July 28, 2014
- Published electronically: October 23, 2014
- Additional Notes: The author was partially supported by the NSF grants of Ilya Kapovich (DMS-0904200) and Christopher J. Leininger (DMS-1207183) and also acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 âRNMS: GEometric structures And Representation varietiesâ (the GEAR Network)
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn. 18 (2014), 192-216
- MSC (2010): Primary 20F65
- DOI: https://doi.org/10.1090/S1088-4173-2014-00270-7
- MathSciNet review: 3273532