Equidistribution of rational functions having a superattracting periodic point towards the activity current and the bifurcation current
HTML articles powered by AMS MathViewer
- by Yûsuke Okuyama PDF
- Conform. Geom. Dyn. 18 (2014), 217-228 Request permission
Abstract:
We establish an approximation of the activity current $T_c$ in the parameter space of a holomorphic family $f$ of rational functions having a marked critical point $c$ by parameters for which $c$ is periodic under $f$, i.e., is a superattracting periodic point. This partly generalizes a Dujardin–Favre theorem for rational functions having preperiodic points, and refines a Bassanelli–Berteloot theorem on a similar approximation of the bifurcation current $T_f$ of the holomorphic family $f$. The proof is based on a dynamical counterpart of this approximation.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Giovanni Bassanelli and François Berteloot, Bifurcation currents in holomorphic dynamics on $\Bbb P^k$, J. Reine Angew. Math. 608 (2007), 201–235. MR 2339474, DOI 10.1515/CRELLE.2007.058
- Giovanni Bassanelli and François Berteloot, Lyapunov exponents, bifurcation currents and laminations in bifurcation loci, Math. Ann. 345 (2009), no. 1, 1–23. MR 2520048, DOI 10.1007/s00208-008-0325-1
- Giovanni Bassanelli and François Berteloot, Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J. 201 (2011), 23–43. MR 2772169, DOI 10.1215/00277630-2010-016
- François Berteloot, Lyapunov exponent of a rational map and multipliers of repelling cycles, Riv. Math. Univ. Parma (N.S.) 1 (2010), no. 2, 263–269. MR 2789444
- François Berteloot, Bifurcation currents in holomorphic families of rational maps, Pluripotential theory, Lecture Notes in Math., vol. 2075, Springer, Heidelberg, 2013, pp. 1–93. MR 3089068, DOI 10.1007/978-3-642-36421-1_{1}
- François Berteloot, Christophe Dupont, and Laura Molino, Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2137–2168 (English, with English and French summaries). MR 2473632, DOI 10.5802/aif.2409
- Bodil Branner and John H. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), no. 3-4, 229–325. MR 1194004, DOI 10.1007/BF02392761
- X. Buff and T. Gauthier, Quadratic polynomials, multipliers and equidistribution, Proc. Amer. Math. Soc. (to appear).
- Demailly, J.-P. Complex analytic and algebraic geometry, available at http://www-fourier.ujf-grenoble.fr/˜demailly/manuscripts/agbook.pdf (2012).
- Laura DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann. 326 (2003), no. 1, 43–73. MR 1981611, DOI 10.1007/s00208-002-0404-7
- Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648690, DOI 10.1007/978-3-642-13171-4_{4}
- Romain Dujardin, Bifurcation currents and equidistribution in parameter space, Frontiers in Complex Dynamics: in Celebration of John Milnor’s 80th birthday, Princeton University Press (2014), 515–566.
- Romain Dujardin and Charles Favre, Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130 (2008), no. 4, 979–1032. MR 2427006, DOI 10.1353/ajm.0.0009
- T. Gauthier, Equidistribution towards the bifurcation current I : Mulitpliers and degree d polynomials, ArXiv e-prints (Dec. 2013).
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Mattias Jonsson, Sums of Lyapunov exponents for some polynomial maps of $\textbf {C}^2$, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 613–630. MR 1631728, DOI 10.1017/S0143385798108209
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- G. M. Levin, On the theory of iterations of polynomial families in the complex plane, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 51 (1989), 94–106 (Russian); English transl., J. Soviet Math. 52 (1990), no. 6, 3512–3522. MR 1009151, DOI 10.1007/BF01095412
- M. Yu. Lyubich, Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk 38 (1983), no. 5(233), 197–198 (Russian). MR 718838
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Patrick Morton and Franco Vivaldi, Bifurcations and discriminants for polynomial maps, Nonlinearity 8 (1995), no. 4, 571–584. MR 1342504, DOI 10.1088/0951-7715/8/4/006
- Yûsuke Okuyama, Repelling periodic points and logarithmic equidistribution in non-archimedean dynamics, Acta Arith. 152 (2012), no. 3, 267–277. MR 2885787, DOI 10.4064/aa152-3-3
- N.-m. Pham, Lyapunov exponents and bifurcation current for polynomial-like maps, arXiv preprint math/0512557 (2005).
- Feliks Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), no. 1, 309–317. MR 1186141, DOI 10.1090/S0002-9939-1993-1186141-9
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
Additional Information
- Yûsuke Okuyama
- Affiliation: Division of Mathematics, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 Japan
- Email: okuyama@kit.ac.jp
- Received by editor(s): February 24, 2014
- Received by editor(s) in revised form: July 11, 2014, and August 12, 2014
- Published electronically: November 12, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn. 18 (2014), 217-228
- MSC (2010): Primary 37F45
- DOI: https://doi.org/10.1090/S1088-4173-2014-00271-9
- MathSciNet review: 3276585