## Equidistribution of rational functions having a superattracting periodic point towards the activity current and the bifurcation current

HTML articles powered by AMS MathViewer

- by Yûsuke Okuyama PDF
- Conform. Geom. Dyn.
**18**(2014), 217-228 Request permission

## Abstract:

We establish an approximation of the activity current $T_c$ in the parameter space of a holomorphic family $f$ of rational functions having a marked critical point $c$ by parameters for which $c$ is periodic under $f$, i.e., is a superattracting periodic point. This partly generalizes a Dujardin–Favre theorem for rational functions having preperiodic points, and refines a Bassanelli–Berteloot theorem on a similar approximation of the bifurcation current $T_f$ of the holomorphic family $f$. The proof is based on a dynamical counterpart of this approximation.## References

- Tom M. Apostol,
*Introduction to analytic number theory*, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR**0434929** - Giovanni Bassanelli and François Berteloot,
*Bifurcation currents in holomorphic dynamics on $\Bbb P^k$*, J. Reine Angew. Math.**608**(2007), 201–235. MR**2339474**, DOI 10.1515/CRELLE.2007.058 - Giovanni Bassanelli and François Berteloot,
*Lyapunov exponents, bifurcation currents and laminations in bifurcation loci*, Math. Ann.**345**(2009), no. 1, 1–23. MR**2520048**, DOI 10.1007/s00208-008-0325-1 - Giovanni Bassanelli and François Berteloot,
*Distribution of polynomials with cycles of a given multiplier*, Nagoya Math. J.**201**(2011), 23–43. MR**2772169**, DOI 10.1215/00277630-2010-016 - François Berteloot,
*Lyapunov exponent of a rational map and multipliers of repelling cycles*, Riv. Math. Univ. Parma (N.S.)**1**(2010), no. 2, 263–269. MR**2789444** - François Berteloot,
*Bifurcation currents in holomorphic families of rational maps*, Pluripotential theory, Lecture Notes in Math., vol. 2075, Springer, Heidelberg, 2013, pp. 1–93. MR**3089068**, DOI 10.1007/978-3-642-36421-1_{1} - François Berteloot, Christophe Dupont, and Laura Molino,
*Normalization of bundle holomorphic contractions and applications to dynamics*, Ann. Inst. Fourier (Grenoble)**58**(2008), no. 6, 2137–2168 (English, with English and French summaries). MR**2473632**, DOI 10.5802/aif.2409 - Bodil Branner and John H. Hubbard,
*The iteration of cubic polynomials. II. Patterns and parapatterns*, Acta Math.**169**(1992), no. 3-4, 229–325. MR**1194004**, DOI 10.1007/BF02392761 - X. Buff and T. Gauthier,
*Quadratic polynomials, multipliers and equidistribution*, Proc. Amer. Math. Soc. (to appear). - Demailly, J.-P. Complex analytic and algebraic geometry,
*available at http://www-fourier.ujf-grenoble.fr/˜demailly/manuscripts/agbook.pdf*(2012). - Laura DeMarco,
*Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity*, Math. Ann.**326**(2003), no. 1, 43–73. MR**1981611**, DOI 10.1007/s00208-002-0404-7 - Tien-Cuong Dinh and Nessim Sibony,
*Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings*, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR**2648690**, DOI 10.1007/978-3-642-13171-4_{4} - Romain Dujardin,
*Bifurcation currents and equidistribution in parameter space*, Frontiers in Complex Dynamics: in Celebration of John Milnor’s 80th birthday, Princeton University Press (2014), 515–566. - Romain Dujardin and Charles Favre,
*Distribution of rational maps with a preperiodic critical point*, Amer. J. Math.**130**(2008), no. 4, 979–1032. MR**2427006**, DOI 10.1353/ajm.0.0009 - T. Gauthier,
*Equidistribution towards the bifurcation current I : Mulitpliers and degree d polynomials*, ArXiv e-prints (Dec. 2013). - Lars Hörmander,
*The analysis of linear partial differential operators. I*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR**717035**, DOI 10.1007/978-3-642-96750-4 - Mattias Jonsson,
*Sums of Lyapunov exponents for some polynomial maps of $\textbf {C}^2$*, Ergodic Theory Dynam. Systems**18**(1998), no. 3, 613–630. MR**1631728**, DOI 10.1017/S0143385798108209 - Maciej Klimek,
*Pluripotential theory*, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR**1150978** - G. M. Levin,
*On the theory of iterations of polynomial families in the complex plane*, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen.**51**(1989), 94–106 (Russian); English transl., J. Soviet Math.**52**(1990), no. 6, 3512–3522. MR**1009151**, DOI 10.1007/BF01095412 - M. Yu. Lyubich,
*Some typical properties of the dynamics of rational mappings*, Uspekhi Mat. Nauk**38**(1983), no. 5(233), 197–198 (Russian). MR**718838** - R. Mañé, P. Sad, and D. Sullivan,
*On the dynamics of rational maps*, Ann. Sci. École Norm. Sup. (4)**16**(1983), no. 2, 193–217. MR**732343**, DOI 10.24033/asens.1446 - Curtis T. McMullen,
*Complex dynamics and renormalization*, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR**1312365** - John Milnor,
*Dynamics in one complex variable*, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR**2193309** - Patrick Morton and Franco Vivaldi,
*Bifurcations and discriminants for polynomial maps*, Nonlinearity**8**(1995), no. 4, 571–584. MR**1342504**, DOI 10.1088/0951-7715/8/4/006 - Yûsuke Okuyama,
*Repelling periodic points and logarithmic equidistribution in non-archimedean dynamics*, Acta Arith.**152**(2012), no. 3, 267–277. MR**2885787**, DOI 10.4064/aa152-3-3 - N.-m. Pham,
*Lyapunov exponents and bifurcation current for polynomial-like maps*, arXiv preprint math/0512557 (2005). - Feliks Przytycki,
*Lyapunov characteristic exponents are nonnegative*, Proc. Amer. Math. Soc.**119**(1993), no. 1, 309–317. MR**1186141**, DOI 10.1090/S0002-9939-1993-1186141-9 - Joseph H. Silverman,
*The arithmetic of dynamical systems*, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR**2316407**, DOI 10.1007/978-0-387-69904-2

## Additional Information

**Yûsuke Okuyama**- Affiliation: Division of Mathematics, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 Japan
- Email: okuyama@kit.ac.jp
- Received by editor(s): February 24, 2014
- Received by editor(s) in revised form: July 11, 2014, and August 12, 2014
- Published electronically: November 12, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**18**(2014), 217-228 - MSC (2010): Primary 37F45
- DOI: https://doi.org/10.1090/S1088-4173-2014-00271-9
- MathSciNet review: 3276585