Uniqueness of minimisers for a Grötzsch-Belinskiĭ type inequality in the Heisenberg group
HTML articles powered by AMS MathViewer
- by Zoltán M. Balogh, Katrin Fässler and Ioannis D. Platis
- Conform. Geom. Dyn. 19 (2015), 122-145
- DOI: https://doi.org/10.1090/ecgd/278
- Published electronically: May 6, 2015
- PDF | Request permission
Abstract:
The modulus method introduced by H. Grötzsch yields bounds for a mean distortion functional of quasiconformal maps between two annuli mapping the respective boundary components onto each other. P. P. Belinskiĭ studied these inequalities in the plane and identified the family of all minimisers. Beyond the Euclidean framework, a Grötzsch–Belinskiĭ-type inequality has been previously considered for quasiconformal maps between annuli in the Heisenberg group whose boundaries are Korányi spheres. In this note we show that—in contrast to the planar situation—the minimiser in this setting is essentially unique.References
- K. Astala, T. Iwaniec, and G. Martin, Deformations of annuli with smallest mean distortion, Arch. Ration. Mech. Anal. 195 (2010), no. 3, 899–921. MR 2591976, DOI 10.1007/s00205-009-0231-z
- K. Astala, T. Iwaniec, G. J. Martin, and J. Onninen, Extremal mappings of finite distortion, Proc. London Math. Soc. (3) 91 (2005), no. 3, 655–702. MR 2180459, DOI 10.1112/S0024611505015376
- Zoltán M. Balogh, Katrin Fässler, and Ioannis D. Platis, Modulus of curve families and extremality of spiral-stretch maps, J. Anal. Math. 113 (2011), 265–291. MR 2788359, DOI 10.1007/s11854-011-0007-x
- Zoltán M. Balogh, Katrin Fässler, and Ioannis D. Platis, Modulus method and radial stretch map in the Heisenberg group, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 149–180. MR 3076803, DOI 10.5186/aasfm.2013.3811
- Zoltán M. Balogh, Pekka Koskela, and Sari Rogovin, Absolute continuity of quasiconformal mappings on curves, Geom. Funct. Anal. 17 (2007), no. 3, 645–664. MR 2346270, DOI 10.1007/s00039-007-0607-x
- Zoltán M. Balogh and Jeremy T. Tyson, Polar coordinates in Carnot groups, Math. Z. 241 (2002), no. 4, 697–730. MR 1942237, DOI 10.1007/s00209-002-0441-7
- P. P. Belinskiĭ, Obshchie svoĭ stva kvazikonformnykh otobrazheniĭ, Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1974 (Russian). MR 0407275
- Christopher J. Bishop, Vladimir Ya. Gutlyanskiĭ, Olli Martio, and Matti Vuorinen, On conformal dilatation in space, Int. J. Math. Math. Sci. 22 (2003), 1397–1420. MR 1980177, DOI 10.1155/S0161171203110034
- Luca Capogna, Donatella Danielli, Scott D. Pauls, and Jeremy T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007. MR 2312336, DOI 10.1007/978-3-7643-8133-2
- N. S. Dairbekov, On mappings with bounded distortion on the Heisenberg group, Sibirsk. Mat. Zh. 41 (2000), no. 1, 49–59, i (Russian, with Russian summary); English transl., Siberian Math. J. 41 (2000), no. 1, 40–47. MR 1756475, DOI 10.1007/BF02673994
- Anatoly Golberg, Distortion of the Grötzsch-Belinskii type for generalized quasiconformal mappings, Georgian Math. J. 17 (2010), no. 2, 241–252. MR 2676950, DOI 10.1515/gmj.2010.011
- A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309–338. MR 788413, DOI 10.1007/BF01388609
- A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1–87. MR 1317384, DOI 10.1006/aima.1995.1017
- Adam Korányi and Hans Martin Reimann, Horizontal normal vectors and conformal capacity of spherical rings in the Heisenberg group, Bull. Sci. Math. (2) 111 (1987), no. 1, 3–21 (English, with French summary). MR 886958
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484
- Ioannis D. Platis, The geometry of complex hyperbolic packs, Math. Proc. Cambridge Philos. Soc. 147 (2009), no. 1, 205–234. MR 2507316, DOI 10.1017/S0305004109002333
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
Bibliographic Information
- Zoltán M. Balogh
- Affiliation: Mathematisches Institut, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Email: zoltan.balogh@math.unibe.ch
- Katrin Fässler
- Affiliation: Mathematisches Institut, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- MR Author ID: 881835
- ORCID: 0000-0001-7920-7810
- Email: katrin.faessler@math.unibe.ch
- Ioannis D. Platis
- Affiliation: Department of Mathematics and Applied Mathematics, University of Crete, University Campus, GR-70013 Heraklion Crete, Greece
- MR Author ID: 659998
- ORCID: 0000-0002-0656-0856
- Email: jplatis@math.uoc.gr
- Received by editor(s): November 7, 2014
- Received by editor(s) in revised form: March 31, 2015
- Published electronically: May 6, 2015
- Additional Notes: This research was supported by the Swiss National Science Foundaton
- © Copyright 2015 American Mathematical Society
- Journal: Conform. Geom. Dyn. 19 (2015), 122-145
- MSC (2010): Primary 30L10, 30C75
- DOI: https://doi.org/10.1090/ecgd/278
- MathSciNet review: 3343051