On Poincaré extensions of rational maps
HTML articles powered by AMS MathViewer
- by Carlos Cabrera, Peter Makienko and Guillermo Sienra
- Conform. Geom. Dyn. 19 (2015), 197-220
- DOI: https://doi.org/10.1090/ecgd/281
- Published electronically: July 29, 2015
- PDF | Request permission
Abstract:
There is a classical extension of Möbius automorphisms of the Riemann sphere into isometries of the hyperbolic space $\mathbb {H}^3$ which is called the Poincaré extension. In this paper, we construct extensions of rational maps on the Riemann sphere over endomorphisms of $\mathbb {H}^3$ exploiting the fact that any holomorphic covering between Riemann surfaces is Möbius for a suitable choice of coordinates. We show that these extensions define conformally natural homomorphisms on suitable subsemigroups of the semigroup of Blaschke maps. We extend the complex multiplication to a product in $\mathbb {H}^3$ that allows us to construct an extension of any given rational map which is right equivariant with respect to the action of $PSL(2,\mathbb {C})$.References
- William Abikoff, Conformal barycenters and the Douady-Earle extension—a discrete dynamical approach, J. Anal. Math. 86 (2002), 221–234. MR 1894482, DOI 10.1007/BF02786649
- Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94–97. MR 111834, DOI 10.1090/S0002-9904-1960-10413-2
- Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600. MR 297992, DOI 10.2307/1970638
- Gérard Besson, Gilles Courtois, and Sylvestre Gallot, Lemme de Schwarz réel et applications géométriques, Acta Math. 183 (1999), no. 2, 145–169 (French). MR 1738042, DOI 10.1007/BF02392826
- Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2, 23–48. MR 857678, DOI 10.1007/BF02392590
- Ravi S. Kulkarni and Ulrich Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994), no. 1, 89–129. MR 1273468, DOI 10.1007/BF02572311
- Shulong Li, Lixin Liu, and Weixu Su, A family of conformally natural extensions of homeomorphisms of the circle, Complex Var. Elliptic Equ. 53 (2008), no. 5, 435–443. MR 2410342, DOI 10.1080/17476930701709104
- Mikhail Lyubich and Yair Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), no. 1, 17–94. MR 1601430
- Gaven J. Martin, Extending rational maps, Conform. Geom. Dyn. 8 (2004), 158–166. MR 2122524, DOI 10.1090/S1088-4173-04-00115-8
- Bernard Maskit, On boundaries of Teichmüller spaces and on Kleinian groups. II, Ann. of Math. (2) 91 (1970), 607–639. MR 297993, DOI 10.2307/1970640
- Curt McMullen, Cusps are dense, Ann. of Math. (2) 133 (1991), no. 1, 217–247. MR 1087348, DOI 10.2307/2944328
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347, DOI 10.1515/9781400865178
- John Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR 2348953, DOI 10.4171/011-1/1
- C. Petersen, Conformally Natural extensions revisited, Arxiv Math, http://arxiv.org/abs/ 1102.1470, (2011).
- Robert R. Phelps, Lectures on Choquet’s theorem, 2nd ed., Lecture Notes in Mathematics, vol. 1757, Springer-Verlag, Berlin, 2001. MR 1835574, DOI 10.1007/b76887
- Peter Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, DOI 10.1112/blms/15.5.401
- Richard Skora, Maps between surfaces, Trans. Amer. Math. Soc. 291 (1985), no. 2, 669–679. MR 800257, DOI 10.1090/S0002-9947-1985-0800257-5
Bibliographic Information
- Carlos Cabrera
- Affiliation: Universidad Nacional Autonoma de Mexico, Unidad Cuernavaca del Instituto de Matematicas, Universidad s/n, Col Lomas de Chamilpa, 62210 Cuernavaca, Mexico
- MR Author ID: 829036
- Email: carloscabrerao@im.unam.mx
- Peter Makienko
- Affiliation: Universidad Nacional Autonoma de Mexico, Unidad Cuernavaca del Instituto de Matematicas, Universidad s/n, Col Lomas de Chamilpa, 62210 Cuernavaca, Mexico
- Email: makienko@matcuer.unam.mx
- Guillermo Sienra
- Affiliation: Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Av. Universidad 3000, 04510 Mexico, Mexico
- MR Author ID: 223466
- Email: gsl@dinamical.fciencias.unam.mx
- Received by editor(s): June 13, 2013
- Received by editor(s) in revised form: November 10, 2014, and April 24, 2015
- Published electronically: July 29, 2015
- Additional Notes: This work was partially supported by PAPIIT IN-105912 and CONACYT CB2010/153850.
- © Copyright 2015 American Mathematical Society
- Journal: Conform. Geom. Dyn. 19 (2015), 197-220
- MSC (2010): Primary 37F10, 37F30; Secondary 30F99
- DOI: https://doi.org/10.1090/ecgd/281
- MathSciNet review: 3373954