Conformal geometric inequalities on the Klein bottle
Authors:
Chady El Mir and Zeina Yassine
Journal:
Conform. Geom. Dyn. 19 (2015), 240-257
MSC (2010):
Primary 53C20, 53C22, 53C23
DOI:
https://doi.org/10.1090/ecgd/283
Published electronically:
October 28, 2015
MathSciNet review:
3416311
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove three optimal conformal geometric inequalities of C. Blatter type on every Riemannian Klein bottle. These inequalities provide conformal lower bounds on the area and involve lengths of homotopy classes of curves that are natural candidates to realize the systole.
- Colin C. Adams and Alan W. Reid, Systoles of hyperbolic $3$-manifolds, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 1, 103–110. MR 1724432, DOI https://doi.org/10.1017/S0305004199003990
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0357743
- C. Bavard, Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986), no. 3, 439–441 (French). MR 842624, DOI https://doi.org/10.1007/BF01457227
- C. Bavard, Inégalités isosystoliques conformes pour la bouteille de Klein, Geom. Dedicata 27 (1988), no. 3, 349–355 (French, with English summary). MR 960206, DOI https://doi.org/10.1007/BF00181499
- Christophe Bavard, Inégalités isosystoliques conformes, Comment. Math. Helv. 67 (1992), no. 1, 146–166 (French). MR 1144618, DOI https://doi.org/10.1007/BF02566493
- Christophe Bavard, Une remarque sur la géométrie systolique de la bouteille de Klein, Arch. Math. (Basel) 87 (2006), no. 1, 72–74 (French, with English summary). MR 2246408, DOI https://doi.org/10.1007/s00013-006-1665-2
- Christian Blatter, Zur Riemannschen Geometrie im Grossen auf dem Möbiusband, Compositio Math. 15 (1961), 88–107 (1961) (German). MR 140060
- Chady El Mir and Jacques Lafontaine, Sur la géométrie systolique des variétés de Bieberbach, Geom. Dedicata 136 (2008), 95–110 (French, with English summary). MR 2443345, DOI https://doi.org/10.1007/s10711-008-9276-7
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI https://doi.org/10.1007/BF02404474
- Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian geometry, 3rd ed., Universitext, Springer-Verlag, Berlin, 2004. MR 2088027
- Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. MR 697984
- James J. Hebda, Two geometric inequalities for the torus, Geom. Dedicata 38 (1991), no. 1, 101–106. MR 1099924, DOI https://doi.org/10.1007/BF00147738
- James A. Jenkins, Univalent functions and conformal mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 18, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. Reihe: Moderne Funktionentheorie. MR 0096806
- Mikhail G. Katz and Stéphane Sabourau, An optimal systolic inequality for CAT$(0)$ metrics in genus two, Pacific J. Math. 227 (2006), no. 1, 95–107. MR 2247874, DOI https://doi.org/10.2140/pjm.2006.227.95
- Mikhail G. Katz, Systolic geometry and topology, Mathematical Surveys and Monographs, vol. 137, American Mathematical Society, Providence, RI, 2007. With an appendix by Jake P. Solomon. MR 2292367
- Linda Keen, An extremal length on a torus, J. Analyse Math. 19 (1967), 203–206. MR 216436, DOI https://doi.org/10.1007/BF02788716
- P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55–71. MR 48886
- Burton Rodin, Extremal length and geometric inequalities, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 370–376. MR 0237771
- Takashi Sakai, A proof of the isosystolic inequality for the Klein bottle, Proc. Amer. Math. Soc. 104 (1988), no. 2, 589–590. MR 962833, DOI https://doi.org/10.1090/S0002-9939-1988-0962833-7
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 53C20, 53C22, 53C23
Retrieve articles in all journals with MSC (2010): 53C20, 53C22, 53C23
Additional Information
Chady El Mir
Affiliation:
Laboratoire de Mathématiques et Applications (LaMA), Université Libanaise, Tripoli, Liban
MR Author ID:
849993
Email:
chady.mir@gmail.com
Zeina Yassine
Affiliation:
Laboratoire D’analyse et Mathématiques Appliquées (UMR 8050), Université Paris-Est, UPEC, UPEMLV, CNRS, F-94010, Créteil, France
Email:
zeina.yassine@u-pec.fr
Keywords:
Klein bottle,
conformal metric,
systole,
isosystolic inequality
Received by editor(s):
April 17, 2014
Received by editor(s) in revised form:
November 8, 2015, August 16, 2015, and September 4, 2015
Published electronically:
October 28, 2015
Article copyright:
© Copyright 2015
American Mathematical Society