Conformal geometric inequalities on the Klein bottle
HTML articles powered by AMS MathViewer
- by Chady El Mir and Zeina Yassine
- Conform. Geom. Dyn. 19 (2015), 240-257
- DOI: https://doi.org/10.1090/ecgd/283
- Published electronically: October 28, 2015
- PDF | Request permission
Abstract:
We prove three optimal conformal geometric inequalities of C. Blatter type on every Riemannian Klein bottle. These inequalities provide conformal lower bounds on the area and involve lengths of homotopy classes of curves that are natural candidates to realize the systole.References
- Colin C. Adams and Alan W. Reid, Systoles of hyperbolic $3$-manifolds, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 1, 103–110. MR 1724432, DOI 10.1017/S0305004199003990
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- C. Bavard, Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986), no. 3, 439–441 (French). MR 842624, DOI 10.1007/BF01457227
- C. Bavard, Inégalités isosystoliques conformes pour la bouteille de Klein, Geom. Dedicata 27 (1988), no. 3, 349–355 (French, with English summary). MR 960206, DOI 10.1007/BF00181499
- Christophe Bavard, Inégalités isosystoliques conformes, Comment. Math. Helv. 67 (1992), no. 1, 146–166 (French). MR 1144618, DOI 10.1007/BF02566493
- Christophe Bavard, Une remarque sur la géométrie systolique de la bouteille de Klein, Arch. Math. (Basel) 87 (2006), no. 1, 72–74 (French, with English summary). MR 2246408, DOI 10.1007/s00013-006-1665-2
- Christian Blatter, Zur Riemannschen Geometrie im Grossen auf dem Möbiusband, Compositio Math. 15 (1961), 88–107 (1961) (German). MR 140060
- Chady El Mir and Jacques Lafontaine, Sur la géométrie systolique des variétés de Bieberbach, Geom. Dedicata 136 (2008), 95–110 (French, with English summary). MR 2443345, DOI 10.1007/s10711-008-9276-7
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474
- Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian geometry, 3rd ed., Universitext, Springer-Verlag, Berlin, 2004. MR 2088027, DOI 10.1007/978-3-642-18855-8
- Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. MR 697984
- James J. Hebda, Two geometric inequalities for the torus, Geom. Dedicata 38 (1991), no. 1, 101–106. MR 1099924, DOI 10.1007/BF00147738
- James A. Jenkins, Univalent functions and conformal mapping, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0096806
- Mikhail G. Katz and Stéphane Sabourau, An optimal systolic inequality for CAT$(0)$ metrics in genus two, Pacific J. Math. 227 (2006), no. 1, 95–107. MR 2247874, DOI 10.2140/pjm.2006.227.95
- Mikhail G. Katz, Systolic geometry and topology, Mathematical Surveys and Monographs, vol. 137, American Mathematical Society, Providence, RI, 2007. With an appendix by Jake P. Solomon. MR 2292367, DOI 10.1090/surv/137
- Linda Keen, An extremal length on a torus, J. Analyse Math. 19 (1967), 203–206. MR 216436, DOI 10.1007/BF02788716
- P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55–71. MR 48886, DOI 10.2140/pjm.1952.2.55
- Burton Rodin, Extremal length and geometric inequalities, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 370–376. MR 0237771
- Takashi Sakai, A proof of the isosystolic inequality for the Klein bottle, Proc. Amer. Math. Soc. 104 (1988), no. 2, 589–590. MR 962833, DOI 10.1090/S0002-9939-1988-0962833-7
Bibliographic Information
- Chady El Mir
- Affiliation: Laboratoire de Mathématiques et Applications (LaMA), Université Libanaise, Tripoli, Liban
- MR Author ID: 849993
- Email: chady.mir@gmail.com
- Zeina Yassine
- Affiliation: Laboratoire D’analyse et Mathématiques Appliquées (UMR 8050), Université Paris-Est, UPEC, UPEMLV, CNRS, F-94010, Créteil, France
- Email: zeina.yassine@u-pec.fr
- Received by editor(s): April 17, 2014
- Received by editor(s) in revised form: November 8, 2015, August 16, 2015, and September 4, 2015
- Published electronically: October 28, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Conform. Geom. Dyn. 19 (2015), 240-257
- MSC (2010): Primary 53C20, 53C22, 53C23
- DOI: https://doi.org/10.1090/ecgd/283
- MathSciNet review: 3416311