Parametrizations of Teichmüller spaces by trace functions and action of mapping class groups
HTML articles powered by AMS MathViewer
- by Gou Nakamura and Toshihiro Nakanishi PDF
- Conform. Geom. Dyn. 20 (2016), 25-42 Request permission
Abstract:
We give a set of trace functions which give a global parametrization of the Teichmüller space $\mathcal {T}(g,n)(L_1,\dots ,L_n)$ of hyperbolic surfaces of genus $g$ with $n$ geodesic boundary components of lengths $L_1$,…, $L_n$ such that the action of the mapping class group on the Teichmüller space can be represented by rational transformations in the parameters.References
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Marc Culler, Lifting representations to covering groups, Adv. in Math. 59 (1986), no. 1, 64–70. MR 825087, DOI 10.1016/0001-8708(86)90037-X
- J. Gilman and B. Maskit, An algorithm for $2$-generator Fuchsian groups, Michigan Math. J. 38 (1991), no. 1, 13–32. MR 1091506, DOI 10.1307/mmj/1029004258
- Linda Keen, On Fricke moduli, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 205–224. MR 0288252
- Irwin Kra, On lifting Kleinian groups to $\textrm {SL}(2,\textbf {C})$, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 181–193. MR 780044
- Feng Luo, Geodesic length functions and Teichmüller spaces, J. Differential Geom. 48 (1998), no. 2, 275–317. MR 1630186
- Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957, DOI 10.1007/978-1-4757-6720-9
- Gou Nakamura and Toshihiro Nakanishi, Parametrizations of some Teichmüller spaces by trace functions, Conform. Geom. Dyn. 17 (2013), 47–57. MR 3037875, DOI 10.1090/S1088-4173-2013-00254-3
- Toshihiro Nakanishi and Marjatta Näätänen, Parametrization of Teichmüller space by length parameters, Analysis and topology, World Sci. Publ., River Edge, NJ, 1998, pp. 541–560. MR 1667832
- Toshihiro Nakanishi and Marjatta Näätänen, Areas of two-dimensional moduli spaces, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3241–3252. MR 1844999, DOI 10.1090/S0002-9939-01-06010-5
- Yoshihide Okumura, On the global real analytic coordinates for Teichmüller spaces, J. Math. Soc. Japan 42 (1990), no. 1, 91–101. MR 1027542, DOI 10.2969/jmsj/04210091
- Yoshihide Okumura, Global real analytic length parameters for Teichmüller spaces, Hiroshima Math. J. 26 (1996), no. 1, 165–179. MR 1380431
- R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299–339. MR 919235, DOI 10.1007/BF01223515
- Norman Purzitsky, Two-generator discrete free products, Math. Z. 126 (1972), 209–223. MR 346070, DOI 10.1007/BF01110724
- Paul Schmutz, Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen, Comment. Math. Helv. 68 (1993), no. 2, 278–288 (German). MR 1214232, DOI 10.1007/BF02565819
- Mika Seppälä and Tuomas Sorvali, On geometric parametrization of Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 515–526. MR 802516, DOI 10.5186/aasfm.1985.1058
- Mika Seppälä and Tuomas Sorvali, Parametrization of Teichmüller spaces by geodesic length functions, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 267–284. MR 955845, DOI 10.1007/978-1-4613-9611-6_{1}8
- Mika Seppälä and Tuomas Sorvali, Parametrization of Möbius groups acting in a disk, Comment. Math. Helv. 61 (1986), no. 1, 149–160. MR 847525, DOI 10.1007/BF02621907
- Mika Seppälä and Tuomas Sorvali, Traces of commutators of Möbius transformations, Math. Scand. 68 (1991), no. 1, 53–58. MR 1124819, DOI 10.7146/math.scand.a-12345
- Mika Seppälä and Tuomas Sorvali, Geometry of Riemann surfaces and Teichmüller spaces, North-Holland Mathematics Studies, vol. 169, North-Holland Publishing Co., Amsterdam, 1992. MR 1202043
- Scott A. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987), no. 2, 275–296. MR 880186
- Heiner Zieschang, Finite groups of mapping classes of surfaces, Lecture Notes in Mathematics, vol. 875, Springer-Verlag, Berlin, 1981. MR 643627, DOI 10.1007/BFb0090465
Additional Information
- Gou Nakamura
- Affiliation: Science Division, Center for General Education, Aichi Institute of Technology,1247 Yachigusa, Yakusa, Toyota, 470-0392, Japan
- MR Author ID: 639802
- Email: gou@aitech.ac.jp
- Toshihiro Nakanishi
- Affiliation: Department of Mathematics, Shimane University, Matsue, 690-8504, Japan
- MR Author ID: 225488
- Email: tosihiro@riko.shimane-u.ac.jp
- Received by editor(s): July 2, 2015
- Received by editor(s) in revised form: January 11, 2016
- Published electronically: March 18, 2016
- Additional Notes: The first author was partially supported by the JSPS KAKENHI Grant No. 25400147.
The second author was partially supported by the JSPS KAKENHI Grant No. 22540191. - © Copyright 2016 American Mathematical Society
- Journal: Conform. Geom. Dyn. 20 (2016), 25-42
- MSC (2010): Primary 32G15; Secondary 30F35
- DOI: https://doi.org/10.1090/ecgd/289
- MathSciNet review: 3475293
Dedicated: Dedicated to the memory of Professor Mika Seppälä