Conical limit points and the Cannon-Thurston map
HTML articles powered by AMS MathViewer
- by Woojin Jeon, Ilya Kapovich, Christopher Leininger and Ken’ichi Ohshika
- Conform. Geom. Dyn. 20 (2016), 58-80
- DOI: https://doi.org/10.1090/ecgd/294
- Published electronically: March 18, 2016
- PDF | Request permission
Abstract:
Let $G$ be a non-elementary word-hyperbolic group acting as a convergence group on a compact metrizable space $Z$ so that there exists a continuous $G$-equivariant map $i:\partial G\to Z$, which we call a Cannon-Thurston map. We obtain two characterizations (a dynamical one and a geometric one) of conical limit points in $Z$ in terms of their pre-images under the Cannon-Thurston map $i$. As an application we prove, under the extra assumption that the action of $G$ on $Z$ has no accidental parabolics, that if the map $i$ is not injective, then there exists a non-conical limit point $z\in Z$ with $|i^{-1}(z)|=1$. This result applies to most natural contexts where the Cannon-Thurston map is known to exist, including subgroups of word-hyperbolic groups and Kleinian representations of surface groups. As another application, we prove that if $G$ is a non-elementary torsion-free word-hyperbolic group, then there exists $x\in \partial G$ such that $x$ is not a “controlled concentration point” for the action of $G$ on $\partial G$.References
- I. Agol, Tameness of hyperbolic 3-manifolds, preprint, 2004; arXiv:0405568
- James W. Anderson, Petra Bonfert-Taylor, and Edward C. Taylor, Convergence groups, Hausdorff dimension, and a theorem of Sullivan and Tukia, Geom. Dedicata 103 (2004), 51–67. MR 2034952, DOI 10.1023/B:GEOM.0000013844.35478.e5
- Beat Aebischer, Sungbok Hong, and Darryl McCullough, Recurrent geodesics and controlled concentration points, Duke Math. J. 75 (1994), no. 3, 759–774. MR 1291703, DOI 10.1215/S0012-7094-94-07523-6
- O. Baker and T. R. Riley, Cannon-Thurston maps do not always exist, Forum Math. Sigma 1 (2013), Paper No. e3, 11. MR 3143716, DOI 10.1017/fms.2013.4
- O. Baker and T. Riley, Cannon-Thurston maps, subgroup distortion, and hyperbolic hydra, preprint, 2012; arXiv:1209.0815
- Alan F. Beardon and Bernard Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1–12. MR 333164, DOI 10.1007/BF02392106
- M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), no. 1, 85–101. MR 1152226, DOI 10.4310/jdg/1214447806
- Mladen Bestvina and Michael Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), no. 1, 1–51. MR 1147956, DOI 10.2307/2946562
- M. Bestvina, M. Feighn, and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997), no. 2, 215–244. MR 1445386, DOI 10.1007/PL00001618
- Mladen Bestvina, Mark Feighn, and Michael Handel, The Tits alternative for $\textrm {Out}(F_n)$. I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151 (2000), no. 2, 517–623. MR 1765705, DOI 10.2307/121043
- Mladen Bestvina and Mark Feighn, A hyperbolic $\textrm {Out}(F_n)$-complex, Groups Geom. Dyn. 4 (2010), no. 1, 31–58. MR 2566300, DOI 10.4171/GGD/74
- Mladen Bestvina and Mark Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014), 104–155. MR 3177291, DOI 10.1016/j.aim.2014.02.001
- Mladen Bestvina and Patrick Reynolds, The boundary of the complex of free factors, Duke Math. J. 164 (2015), no. 11, 2213–2251. MR 3385133, DOI 10.1215/00127094-3129702
- Oleg Bogopolski, Introduction to group theory, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. Translated, revised and expanded from the 2002 Russian original. MR 2396717, DOI 10.4171/041
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- Brian H. Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), no. 3, 643–667. MR 1602069, DOI 10.1090/S0894-0347-98-00264-1
- B. H. Bowditch, Convergence groups and configuration spaces, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 23–54. MR 1714838
- Brian H. Bowditch, The Cannon-Thurston map for punctured-surface groups, Math. Z. 255 (2007), no. 1, 35–76. MR 2262721, DOI 10.1007/s00209-006-0012-4
- B. H. Bowditch, Stacks of hyperbolic spaces and ends of 3-manifolds, Geometry and topology down under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, pp. 65–138. MR 3186670, DOI 10.1090/conm/597/11769
- Martin R. Bridson and Daniel Groves, The quadratic isoperimetric inequality for mapping tori of free group automorphisms, Mem. Amer. Math. Soc. 203 (2010), no. 955, xii+152. MR 2590896, DOI 10.1090/S0065-9266-09-00578-X
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000), no. 5, 1071–1089. MR 1800064, DOI 10.1007/PL00001647
- Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky, The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012), no. 1, 1–149. MR 2925381, DOI 10.4007/annals.2012.176.1.1
- Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. MR 2188131, DOI 10.1090/S0894-0347-05-00513-8
- James W. Cannon and William P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315–1355. MR 2326947, DOI 10.2140/gt.2007.11.1315
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR 964685, DOI 10.1017/CBO9780511623912
- Thierry Coulbois and Arnaud Hilion, Botany of irreducible automorphisms of free groups, Pacific J. Math. 256 (2012), no. 2, 291–307. MR 2944977, DOI 10.2140/pjm.2012.256.291
- Thierry Coulbois and Arnaud Hilion, Rips induction: index of the dual lamination of an $\Bbb {R}$-tree, Groups Geom. Dyn. 8 (2014), no. 1, 97–134. MR 3209704, DOI 10.4171/GGD/218
- Thierry Coulbois, Arnaud Hilion, and Martin Lustig, Non-unique ergodicity, observers’ topology and the dual algebraic lamination for $\Bbb R$-trees, Illinois J. Math. 51 (2007), no. 3, 897–911. MR 2379729
- Thierry Coulbois, Arnaud Hilion, and Martin Lustig, $\Bbb R$-trees and laminations for free groups. I. Algebraic laminations, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 723–736. MR 2456901, DOI 10.1112/jlms/jdn052
- Thierry Coulbois, Arnaud Hilion, and Martin Lustig, $\Bbb R$-trees and laminations for free groups. II. The dual lamination of an $\Bbb R$-tree, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 737–754. MR 2456902, DOI 10.1112/jlms/jdn053
- S. Dowdall, I. Kapovich, and S. J. Taylor, Cannon-Thurston maps for hyperbolic free group extensions, Israel J. Math., to appear; arXiv:1506.06974
- Sérgio Fenley, Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry, Geom. Topol. 16 (2012), no. 1, 1–110. MR 2872578, DOI 10.2140/gt.2012.16.1
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926
- Eric M. Freden, Negatively curved groups have the convergence property. I, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 333–348. MR 1346817
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- Victor Gerasimov, Expansive convergence groups are relatively hyperbolic, Geom. Funct. Anal. 19 (2009), no. 1, 137–169. MR 2507221, DOI 10.1007/s00039-009-0718-7
- Victor Gerasimov, Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal. 22 (2012), no. 5, 1361–1399. MR 2989436, DOI 10.1007/s00039-012-0175-6
- Victor Gerasimov and Leonid Potyagailo, Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2115–2137. MR 3120738, DOI 10.4171/JEMS/417
- V. Gerasimov and L. Potyagailo, Similar relatively hyperbolic actions of a group, preprint, 2013; arXiv:1305.6649
- F. W. Gehring and G. J. Martin, Discrete quasiconformal groups. I, Proc. London Math. Soc. (3) 55 (1987), no. 2, 331–358. MR 896224, DOI 10.1093/plms/s3-55_{2}.331
- Michael Handel and Lee Mosher, Axes in outer space, Mem. Amer. Math. Soc. 213 (2011), no. 1004, vi+104. MR 2858636, DOI 10.1090/S0065-9266-2011-00620-9
- M. Handel and L. Mosher, Subgroup decomposition in $Out(F_n)$: Introduction and Research Announcement, preprint, 2013; arXiv:1302.2681
- Woojin Jeon, Inkang Kim, Ken’ichi Ohshika, and Cyril Lecuire, Primitive stable representations of free Kleinian groups, Israel J. Math. 199 (2014), no. 2, 841–866. MR 3219560, DOI 10.1007/s11856-013-0062-3
- W. Jeon and K. Ohshika, Measurable rigidity for Kleinian groups, Ergodic Theory and Dynamical Systems, to appear; published online June 2015; DOI: 10.1017/etds.2015.15
- Ilya Kapovich, A non-quasiconvexity embedding theorem for hyperbolic groups, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 3, 461–486. MR 1713122, DOI 10.1017/S0305004199003862
- Ilya Kapovich, Algorithmic detectability of iwip automorphisms, Bull. Lond. Math. Soc. 46 (2014), no. 2, 279–290. MR 3194747, DOI 10.1112/blms/bdt093
- Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001) Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39–93. MR 1921706, DOI 10.1090/conm/296/05068
- Ilya Kapovich and Martin Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009), no. 3, 1805–1833. MR 2496058, DOI 10.2140/gt.2009.13.1805
- Ilya Kapovich and Martin Lustig, Intersection form, laminations and currents on free groups, Geom. Funct. Anal. 19 (2010), no. 5, 1426–1467. MR 2585579, DOI 10.1007/s00039-009-0041-3
- Ilya Kapovich and Martin Lustig, Invariant laminations for irreducible automorphisms of free groups, Q. J. Math. 65 (2014), no. 4, 1241–1275. MR 3285770, DOI 10.1093/qmath/hat056
- Ilya Kapovich and Martin Lustig, Cannon-Thurston fibers for iwip automorphisms of $F_N$, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 203–224. MR 3335244, DOI 10.1112/jlms/jdu069
- Ilya Kapovich and Alexei Myasnikov, Stallings foldings and subgroups of free groups, J. Algebra 248 (2002), no. 2, 608–668. MR 1882114, DOI 10.1006/jabr.2001.9033
- Ilya Kapovich and Hamish Short, Greenberg’s theorem for quasiconvex subgroups of word hyperbolic groups, Canad. J. Math. 48 (1996), no. 6, 1224–1244. MR 1426902, DOI 10.4153/CJM-1996-065-6
- Michael Kapovich, On the absence of Sullivan’s cusp finiteness theorem in higher dimensions, Algebra and analysis (Irkutsk, 1989) Amer. Math. Soc. Transl. Ser. 2, vol. 163, Amer. Math. Soc., Providence, RI, 1995, pp. 77–89. MR 1331386, DOI 10.1090/trans2/163/07
- Michael Kapovich and Bruce Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 647–669 (English, with English and French summaries). MR 1834498, DOI 10.1016/S0012-9593(00)01049-1
- Richard P. Kent IV and Christopher J. Leininger, Shadows of mapping class groups: capturing convex cocompactness, Geom. Funct. Anal. 18 (2008), no. 4, 1270–1325. MR 2465691, DOI 10.1007/s00039-008-0680-9
- Richard P. Kent IV and Christopher J. Leininger, Uniform convergence in the mapping class group, Ergodic Theory Dynam. Systems 28 (2008), no. 4, 1177–1195. MR 2437226, DOI 10.1017/S0143385707000818
- Erica Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999), no. 5, 1031–1078. MR 1713300, DOI 10.1353/ajm.1999.0034
- Christopher Leininger, Darren D. Long, and Alan W. Reid, Commensurators of finitely generated nonfree Kleinian groups, Algebr. Geom. Topol. 11 (2011), no. 1, 605–624. MR 2783240, DOI 10.2140/agt.2011.11.605
- Christopher J. Leininger, Mahan Mj, and Saul Schleimer, The universal Cannon-Thurston map and the boundary of the curve complex, Comment. Math. Helv. 86 (2011), no. 4, 769–816. MR 2851869, DOI 10.4171/CMH/240
- Gilbert Levitt and Martin Lustig, Irreducible automorphisms of $F_n$ have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003), no. 1, 59–72. MR 1955207, DOI 10.1017/S1474748003000033
- Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001), no. 1, 35–91. MR 1859018, DOI 10.1007/PL00005809
- Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 7 (1994), no. 3, 539–588. MR 1257060, DOI 10.1090/S0894-0347-1994-1257060-3
- Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), no. 1, 1–107. MR 2630036, DOI 10.4007/annals.2010.171.1
- M. Mitra, Ending laminations for hyperbolic group extensions, Geom. Funct. Anal. 7 (1997), no. 2, 379–402. MR 1445392, DOI 10.1007/PL00001624
- Mahan Mitra, Cannon-Thurston maps for hyperbolic group extensions, Topology 37 (1998), no. 3, 527–538. MR 1604882, DOI 10.1016/S0040-9383(97)00036-0
- Mahan Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998), no. 1, 135–164. MR 1622603
- H. Miyachi, Semiconjugacies between actions of topologically tame Kleinian groups, preprint, 2002.
- Mahan Mj, Ending laminations and Cannon-Thurston maps, Geom. Funct. Anal. 24 (2014), no. 1, 297–321. With an appendix by Shubhabrata Das and Mj. MR 3177384, DOI 10.1007/s00039-014-0263-x
- Mahan Mj, Cannon-Thurston maps for pared manifolds of bounded geometry, Geom. Topol. 13 (2009), no. 1, 189–245. MR 2469517, DOI 10.2140/gt.2009.13.189
- Mahan Mj, Cannon-Thurston maps, i-bounded geometry and a theorem of McMullen, Actes du Séminaire de Théorie Spectrale et Géometrie. Volume 28. Année 2009–2010, Sémin. Théor. Spectr. Géom., vol. 28, Univ. Grenoble I, Saint-Martin-d’Hères, [2010?], pp. 63–107. MR 2848212, DOI 10.5802/tsg.279
- Mahan Mj, Cannon-Thurston maps and bounded geometry, Teichmüller theory and moduli problem, Ramanujan Math. Soc. Lect. Notes Ser., vol. 10, Ramanujan Math. Soc., Mysore, 2010, pp. 489–511. MR 2667569
- M. Mj, Cannon-Thurston Maps for Kleinian Groups, arXiv:1002.0996
- Mahan Mj, On discreteness of commensurators, Geom. Topol. 15 (2011), no. 1, 331–350. MR 2776846, DOI 10.2140/gt.2011.15.331
- Mahan Mj, Cannon-Thurston maps for surface groups, Ann. of Math. (2) 179 (2014), no. 1, 1–80. MR 3126566, DOI 10.4007/annals.2014.179.1.1
- Mahan Mj and Abhijit Pal, Relative hyperbolicity, trees of spaces and Cannon-Thurston maps, Geom. Dedicata 151 (2011), 59–78. MR 2780738, DOI 10.1007/s10711-010-9519-2
- Martine Queffélec, Substitution dynamical systems—spectral analysis, 2nd ed., Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 2010. MR 2590264, DOI 10.1007/978-3-642-11212-6
- Igor Rivin, Zariski density and genericity, Int. Math. Res. Not. IMRN 19 (2010), 3649–3657. MR 2725508, DOI 10.1093/imrn/rnq043
- J. Souto, Cannon-Thurston maps for thick free groups, preprint, 2006. http://www.math.ubc.ca/$\sim$jsouto/papers/Cannon-Thurston.pdf.
- Dennis Sullivan, Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 57–73. MR 634434, DOI 10.1090/S0273-0979-1982-14966-7
- Eric L. Swenson, Quasi-convex groups of isometries of negatively curved spaces, Topology Appl. 110 (2001), no. 1, 119–129. Geometric topology and geometric group theory (Milwaukee, WI, 1997). MR 1804703, DOI 10.1016/S0166-8641(99)00166-2
- P. Tukia, A rigidity theorem for Möbius groups, Invent. Math. 97 (1989), no. 2, 405–431. MR 1001847, DOI 10.1007/BF01389048
- Pekka Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157–187. MR 1313451
- Pekka Tukia, Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998), 71–98. MR 1637829, DOI 10.1515/crll.1998.081
- W. P. Thurston, The geometry and topology of three-manifolds, Lecture Notes from Princeton University, 1978–1980.
- Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41–89. MR 2039323, DOI 10.1515/crll.2004.007
Bibliographic Information
- Woojin Jeon
- Affiliation: School of Mathematics, KIAS, Hoegiro 87, Dongdaemun-gu, Seoul, 130-722, Korea
- MR Author ID: 909248
- Email: jwoojin@kias.re.kr
- Ilya Kapovich
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- Email: kapovich@math.uiuc.edu
- Christopher Leininger
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- MR Author ID: 688414
- Email: clein@math.uiuc.edu
- Ken’ichi Ohshika
- Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- MR Author ID: 215829
- Email: ohshika@math.sci.osaka-u.ac.jp
- Received by editor(s): May 7, 2015
- Received by editor(s) in revised form: January 29, 2016
- Published electronically: March 18, 2016
- Additional Notes: The second author was partially supported by Collaboration Grant no. 279836 from the Simons Foundation and by NSF grant DMS-1405146. The third author was partially supported by NSF grants DMS-1207183 and DMS-1510034. The last author was partially supported by JSPS Grants-in-Aid 70183225.
- © Copyright 2016 American Mathematical Society
- Journal: Conform. Geom. Dyn. 20 (2016), 58-80
- MSC (2010): Primary 20F65; Secondary 30F40, 57M60, 37Exx, 37Fxx
- DOI: https://doi.org/10.1090/ecgd/294
- MathSciNet review: 3488025