Growth and monotonicity properties for elliptically schlicht functions
HTML articles powered by AMS MathViewer
- by Galatia Cleanthous and Athanasios G. Georgiadis
- Conform. Geom. Dyn. 20 (2016), 116-127
- DOI: https://doi.org/10.1090/ecgd/293
- Published electronically: May 4, 2016
- PDF | Request permission
Abstract:
Let $f$ be a holomorphic function of the unit disc $\mathbb {D},$ with $f(\mathbb {D})\subset \mathbb {D}$ and $f(0)=0$. Littlewood’s generalization of Schwarz’s lemma asserts that for every $w\in f(\mathbb {D}),$ we have $|w|\leq \prod _{j}|z_{j}|,$ where $\{z_{j}\}_j$ are the pre-images of $w.$ We consider elliptically schlicht functions and we prove an analogous bound involving the elliptic capacity of the image. For these functions, we also study monotonicity theorems involving the elliptic radius and elliptic diameter.References
- Glen D. Anderson, Mavina K. Vamanamurthy, and Matti K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD); A Wiley-Interscience Publication. MR 1462077
- Dimitrios Betsakos, Elliptic, hyperbolic, and condenser capacity; geometric estimates for elliptic capacity, J. Anal. Math. 96 (2005), 37–55. MR 2177181, DOI 10.1007/BF02787824
- Dimitrios Betsakos, Multi-point variations of the Schwarz lemma with diameter and width conditions, Proc. Amer. Math. Soc. 139 (2011), no. 11, 4041–4052. MR 2823049, DOI 10.1090/S0002-9939-2011-10954-7
- Dimitrios Betsakos, Holomorphic functions with image of given logarithmic or elliptic capacity, J. Aust. Math. Soc. 94 (2013), no. 2, 145–157. MR 3109739, DOI 10.1017/S1446788712000559
- A. Bermant, On certain generalizations of E. Lindelöf’s principle and their applications, Rec. Math. [Mat. Sbornik] N.S. 20(62) (1947), 55–112 (Russian, with English summary). MR 0021972
- Robert B. Burckel, Donald E. Marshall, David Minda, Pietro Poggi-Corradini, and Thomas J. Ransford, Area, capacity and diameter versions of Schwarz’s lemma, Conform. Geom. Dyn. 12 (2008), 133–152. MR 2434356, DOI 10.1090/S1088-4173-08-00181-1
- Galatia Cleanthous, Monotonicity theorems for analytic functions centered at infinity, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3545–3551. MR 3238429, DOI 10.1090/S0002-9939-2014-12084-3
- Galatia Cleanthous, Growth theorems for holomorphic functions under geometric conditions for the image, Comput. Methods Funct. Theory 13 (2013), no. 2, 277–294. MR 3089958, DOI 10.1007/s40315-013-0021-3
- Galatia Cleanthous and Athanasios G. Georgiadis, Multi-point bounds for analytic functions under measure conditions, Complex Var. Elliptic Equ. 60 (2015), no. 4, 470–477. MR 3312600, DOI 10.1080/17476933.2014.944864
- V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable, Uspekhi Mat. Nauk 49 (1994), no. 1(295), 3–76 (Russian); English transl., Russian Math. Surveys 49 (1994), no. 1, 1–79. MR 1307130, DOI 10.1070/RM1994v049n01ABEH002002
- V. N. Dubinin, Geometric versions of the Schwarz lemma and symmetrization, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383 (2010), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 25, 63–76, 205–206 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 178 (2011), no. 2, 150–157. MR 2749342, DOI 10.1007/s10958-011-0542-0
- Peter Duren and Reiner Kühnau, Elliptic capacity and its distortion under conformal mapping, J. Anal. Math. 89 (2003), 317–335. MR 1981923, DOI 10.1007/BF02893086
- Helmut Grunsky, Einige Analoga zum Schwarzschen Lemma, Math. Ann. 108 (1933), no. 1, 190–196 (German). MR 1512843, DOI 10.1007/BF01452831
- W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
- W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
- W. K. Hayman, Multivalent functions, 2nd ed., Cambridge Tracts in Mathematics, vol. 110, Cambridge University Press, Cambridge, 1994. MR 1310776, DOI 10.1017/CBO9780511526268
- J. L. W. V. Jensen, Sur un nouvel et important théorème de la théorie des fonctions, Acta Math. 22 (1899), no. 1, 359–364 (French). MR 1554908, DOI 10.1007/BF02417878
- Reiner Kühnau, Transfiniter Durchmesser, Kapazität und Tschebyschewsche Konstante in der euklidischen, hyperbolischen und elliptischen Geometrie, J. Reine Angew. Math. 234 (1969), 216–220 (German). MR 241622, DOI 10.1515/crll.1969.234.216
- Reiner Kühnau, Geometrie der konformen Abbildung auf der hyperbolischen und der elliptischen Ebbene, VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.
- Olli Lehto, On the distribution of values of meromorphic functions of bounded characteristic, Acta Math. 91 (1954), 87–112. MR 62226, DOI 10.1007/BF02393427
- J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, 1944. MR 0012121
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Tao-Shing Shah, On the moduli of some classes of analytic functions, Acta Math. Sinica 5 (1955), 439–454 (Chinese, with English summary). MR 75298
- A. Yu. Solynin, Polarization and functional inequalities, Algebra i Analiz 8 (1996), no. 6, 148–185 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 6, 1015–1038. MR 1458141
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
- Jie Xiao and Kehe Zhu, Volume integral means of holomorphic functions, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1455–1465. MR 2748439, DOI 10.1090/S0002-9939-2010-10797-9
Bibliographic Information
- Galatia Cleanthous
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- MR Author ID: 1032084
- Email: gkleanth@math.auth.gr
- Athanasios G. Georgiadis
- Affiliation: Department of Mathematical Sciences, Aalborg University, Fredrik Bajersvej 7G, 9220 Aalborg East, Denmark
- MR Author ID: 911967
- Email: nasos@math.aau.dk
- Received by editor(s): September 30, 2014
- Received by editor(s) in revised form: February 15, 2016
- Published electronically: May 4, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Conform. Geom. Dyn. 20 (2016), 116-127
- MSC (2010): Primary 30C80, 30C85, 31A15
- DOI: https://doi.org/10.1090/ecgd/293
- MathSciNet review: 3493301