Skip to Main Content

Conformal Geometry and Dynamics

Published by the American Mathematical Society since 1997, the purpose of this electronic-only journal is to provide a forum for mathematical work in related fields broadly described as conformal geometry and dynamics. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4173

The 2020 MCQ for Conformal Geometry and Dynamics is 0.49.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Veech surfaces and their periodic points
HTML articles powered by AMS MathViewer

by Yoshihiko Shinomiya
Conform. Geom. Dyn. 20 (2016), 176-196
DOI: https://doi.org/10.1090/ecgd/296
Published electronically: May 19, 2016

Abstract:

We give inequalities comparing widths or heights of cylinder decompositions of Veech surfaces with the signatures of their Veech groups. As an application of these inequalities, we estimate the numbers of periodic points of non-arithmetic Veech surfaces. The upper bounds depend only on the topological types of Veech surfaces and the signatures of Veech groups as Fuchsian groups. The upper bounds also estimate the numbers of holomorphic sections of holomorphic families of Riemann surfaces constructed from Veech groups of non-arithmetic Veech surfaces.
References
  • Alexandru Buium, On a question of B. Mazur, Duke Math. J. 75 (1994), no. 3, 639–644. MR 1291699, DOI 10.1215/S0012-7094-94-07519-4
  • Robert F. Coleman, Manin’s proof of the Mordell conjecture over function fields, Enseign. Math. (2) 36 (1990), no. 3-4, 393–427. MR 1096426
  • Clifford J. Earle and Frederick P. Gardiner, Teichmüller disks and Veech’s $\scr F$-structures, Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math., vol. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 165–189. MR 1429199, DOI 10.1090/conm/201/02618
  • Benson Farb, editor. Problems on mapping class groups and related topics, volume 74 of Proceedings of Symposia in Pure Mathematics. American Mathematical Society, Providence, RI, 2006.
  • Frederick P. Gardiner. Teichmüller theory and quadratic differentials. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication.
  • Eugene Gutkin, Pascal Hubert, and Thomas A. Schmidt, Affine diffeomorphisms of translation surfaces: periodic points, Fuchsian groups, and arithmeticity, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 6, 847–866 (2004) (English, with English and French summaries). MR 2032528, DOI 10.1016/j.ansens.2003.05.001
  • Eugene Gutkin and Chris Judge, The geometry and arithmetic of translation surfaces with applications to polygonal billiards, Math. Res. Lett. 3 (1996), no. 3, 391–403. MR 1397686, DOI 10.4310/MRL.1996.v3.n3.a8
  • Eugene Gutkin and Chris Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213. MR 1760625, DOI 10.1215/S0012-7094-00-10321-3
  • Hans Grauert, Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 131–149 (German). MR 222087
  • Pascal Hubert, Howard Masur, Thomas Schmidt, and Anton Zorich, Problems on billiards, flat surfaces and translation surfaces, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 233–243. MR 2264543, DOI 10.1090/pspum/074/2264543
  • Frank Herrlich and Gabriela Schmithüsen, On the boundary of Teichmüller disks in Teichmüller and in Schottky space, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 293–349. MR 2349673, DOI 10.4171/029-1/7
  • G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
  • Yoichi Imayoshi, A construction of holomorphic families of Riemann surfaces over the punctured disk with given monodromy, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 93–130. MR 2497789, DOI 10.4171/055-1/4
  • Yôichi Imayoshi and Hiroshige Shiga, A finiteness theorem for holomorphic families of Riemann surfaces, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 207–219. MR 955842, DOI 10.1007/978-1-4613-9611-6_{1}5
  • Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
  • Edmund Landau. Über die Maximalordnung der Permutationen gegebenen Grades [On the maximal order of permutations of given degree]. Arch. Math. Phys., 5:92–103, 1903. https://archive.org/details/archivdermathem48grungoog.
  • Ju. I. Manin, Rational points on algebraic curves over function fields, Izv. Akad. Nauk SSSR Ser. Mat., 27:1395–1440, 1963.
  • Yu. I. Manin. Letter to the editors: “Rational points on algebraic curves over function fields” [Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 1397–1442; MR0157971 (28 #1199)]. Izv. Akad. Nauk SSSR Ser. Mat., 53(2):447–448, 1989.
  • Jean-Pierre Massias, Majoration explicite de l’ordre maximum d’un élément du groupe symétrique, Ann. Fac. Sci. Toulouse Math. (5) 6 (1984), no. 3-4, 269–281 (1985) (French, with English summary). MR 799599
  • Megumu Miwa, On Mordell’s conjecture for algebraic curves over function fields, J. Math. Soc. Japan 18 (1966), 182–188. MR 190145, DOI 10.2969/jmsj/01820182
  • Martin Möller, Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, Invent. Math. 165 (2006), no. 3, 633–649. MR 2242629, DOI 10.1007/s00222-006-0510-3
  • Hideo Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33–71. MR 145106, DOI 10.2307/1970201
  • Hiroshige Shiga, On monodromies of holomorphic families of Riemann surfaces and modular transformations, Math. Proc. Cambridge Philos. Soc. 122 (1997), no. 3, 541–549. MR 1466656, DOI 10.1017/S0305004197001825
  • Yoshihiko Shinomiya, On holomorphic sections of Veech holomorphic families of Riemann surfaces, Ann. Acad. Sci. Fenn. Math. 39 (2014), no. 1, 83–95. MR 3186807, DOI 10.5186/aasfm.2014.3906
  • Yoshihiko Shinomiya, Veech holomorphic families of Riemann surfaces, holomorphic sections, and Diophantine problems, Trans. Amer. Math. Soc. 366 (2014), no. 6, 3161–3190. MR 3180743, DOI 10.1090/S0002-9947-2014-06056-X
  • Kurt Strebel. Quadratic differentials, volume 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1984.
  • W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583. MR 1005006, DOI 10.1007/BF01388890
  • W. A. Veech, Erratum: “Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards”, Invent. Math. 103 (1991), no. 2, 447. MR 1085115, DOI 10.1007/BF01239521
Similar Articles
  • Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30F35, 32G15, 32G05, 32G08
  • Retrieve articles in all journals with MSC (2010): 30F35, 32G15, 32G05, 32G08
Bibliographic Information
  • Yoshihiko Shinomiya
  • Affiliation: Mathematics Education, Faculty of Education College of Education, Academic Institute 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
  • MR Author ID: 975740
  • Email: shinomiya.yoshihiko@shizuoka.ac.jp
  • Received by editor(s): July 27, 2015
  • Received by editor(s) in revised form: November 23, 2015, and March 17, 2016
  • Published electronically: May 19, 2016
  • © Copyright 2016 American Mathematical Society
  • Journal: Conform. Geom. Dyn. 20 (2016), 176-196
  • MSC (2010): Primary 30F35; Secondary 32G15, 32G05, 32G08
  • DOI: https://doi.org/10.1090/ecgd/296
  • MathSciNet review: 3513566