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QUASICIRCLES AND THE CONFORMAL GROUP

YVES BENOIST AND DOMINIQUE HULIN

Abstract. We prove that a Jordan curve in the 2-sphere is a quasicircle if
and only if the closure of its orbit under the action of the conformal group
contains only points and Jordan curves.

1. Introduction

The 2-sphere S2, oriented and equipped with its standard conformal structure,
is isomorphic to the complex projective line P1C � C ∪ {∞}.

Let K ≥ 1. By definition (see [16] or Section 2.1), a K-quasicircle c ⊂ S2 is
the image c = f(c0) of a circle c0 ⊂ S2 under a K-quasiconformal homeomorphism
f : S2 → S2.

Our aim in this paper is to characterize those Jordan curves in S2 that are
quasicircles in terms of their orbit under the action of the conformal group G :=
Conf+(S2) � PSl2C.

Let K denote the set of nonempty compact subsets of S2 equipped with the
Hausdorff distance. This space K is a compact metric space. Observe that, when
C � S2 is any proper compact subset of S2, the closure GC ⊂ K of its orbit in K
contains all singletons in S2. We thus also introduce K0 ⊂ K, the set of compact
subsets of S2 distinct from a singleton.

Theorem 1.1. Let K ≥ 1. The set of all K-quasicircles of S2 is a closed G-
invariant subset of K0.

Conversely, any closed G-invariant subset of K0 which consists only of Jordan
curves is included in the set of K-quasicircles for some K ≥ 1.1

A straightforward consequence is the following topological characterization of
quasicircles.

Corollary 1.2. A Jordan curve c ⊂ S2 is a quasicircle if and only if its orbit
closure Gc in K consists only of points and Jordan curves.

In other words, quasicircles are characterized among Jordan curves by the fact
that “when zooming in, one sees nothing but Jordan curves”.

Since they were first introduced by Pfluger and Tienari in the early 1960s, a num-
ber of various characterizations of quasicircles has been progressively discovered.
This history leading to an impressive list of equivalent definitions is the subject of
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the nice and recent book “The ubiquitous quasidisk” by Gehring and Hag [9]. Our
new characterization has yet a different flavour.

The paper is organized as follows. In Section 2, we briefly recall the definition of
quasiconformal maps and quasicircles, and prove that the limit in K of a convergent
sequence of K-quasicircles is either a point or a K-quasicircle. This result, which
is the first part of Theorem 1.1, follows readily from a standard compactness result
for K-quasiconformal homeomorphisms of S2. We also recall the so-called Ahlfors’
arc condition, which is a criterion for a Jordan curve in S2 to be a quasicircle. In
Section 3 we outline the proof of the second part of Theorem 1.1. It involves three
intermediate results: Propositions 3.1, 3.3, and 3.4. We fill in the details of these
three propositions in Section 4 where we address topology of the plane, in Section 5
where we consider maximal disks in Jordan domains of S2, and in Section 6 where
we examine finite sequences of real numbers. We wrap up the proof of Theorem
1.1 in Section 7.

In Section 8, we will explain an analog of Theorem 1.1 where Jordan curves are
replaced by Cantor sets (Theorem 8.1). In Section 9, we give an elementary proof
of a technical result (Proposition 5.6) which is needed in our proof.

2. Limits of K-quasicircles

In this section, we prove the first part of Theorem 1.1. It relies
on the classical compactness property of K-quasiconformal maps
(Theorem 2.1). We also recall Ahlfors’ characterization of quasi-
circles (Theorem 2.4).

2.1. Quasiconformal maps and quasicircles. Let us first recall the definition
of quasiconformal maps (see [2] or [13]).

A quadrilateral Q is a Jordan domain in S2, together with a cyclically ordered
quadruple of boundary points. We say that two quadrilaterals Q and Q′ are con-
formally equivalent when there exists a homeomorphism ϕ : Q → Q′ between their
closures that sends the vertices of Q to the vertices of Q′, and whose restriction
ϕ : Q → Q′ is a conformal map.

Any quadrilateral Q is conformally equivalent to a rectangle R with vertices
(0, x, x+ iy, iy) where x and y are positive. The conformal modulus of the quadri-
lateral Q is then defined as m(Q) = m(R) := x/y.

A homeomorphism f : S2 → S2 is said to be K-quasiconformal (K ≥ 1) if the
inequalities

K−1m(Q) ≤ m(f(Q)) ≤ Km(Q)

hold for any quadrilateral Q ⊂ S2.
A conformal homeomorphism f : S2 → S2 is 1-quasiconformal. It can be proved

that the converse is true, that is, a 1-quasiconformal homeomorphism is actually
conformal [13, Theorem I.5.1]. It follows immediately from the definition that, when
fi : S

2 → S2 are Ki-quasiconformal homeomorphisms (i = 1, 2), the composed map
f1 ◦ f2 : S2 → S2 is K1K2-quasiconformal.

As already mentioned, a K-quasicircle c ⊂ S2 is the image c = f(c0) of a circle
c0 ⊂ S2 under a K-quasiconformal homeomorphism f : S2 → S2.

2.2. Compactness for quasiconformal maps. Equip the 2-sphere S2 with its
canonical Riemannian metric d. The main property of quasiconformal maps that
will be used in this paper is the following fundamental compactness theorem.
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Theorem 2.1 ([13, Theorems II.5.1 and II.5.3]). Let K ≥ 1, let z1, z2, z3 be
three distinct points in S2, and let fn : S2 → S2 be a sequence of K-quasiconformal
homeomorphisms such that the three sequences (fn(zi))n≥1 converge to three distinct
points. Then, there exists a subsequence (fnk

) and a K-quasiconformal homeomor-
phism f : S2 → S2 such that fnk

→ f uniformly on S2.

We will infer that the limit of a sequence of K-quasicircles that converges to
a compact set which is not a point is also a K-quasicircle. Moreover, we will
prove that one can choose parameterizations for this sequence of quasicircles that
converge to a parameterization of the limit. This means that a convergent sequence
of K-quasicircles cannot fold several times over its limit, that is, the configuration
in Figure 1 is forbidden.

Let S1 := R ∪ {∞} denote the standard circle in S2 � C ∪ {∞}.

Proposition 2.2. Let cn ⊂ S2 be a sequence of K-quasicircles that converges in
K to a compact set c∞ ⊂ S2 which is not a point. After going to a subsequence
if necessary, there exist K-quasiconformal homeomorphisms fn : S2 → S2 and
f∞ : S2 → S2 with cn = fn(S

1), c∞ = f∞(S1), and such that fn → f∞ uniformly
on S2.

Proof. Let hn be a K-quasiconformal homeomorphism of S2 such that cn = hn(S
1).

The limit c∞ = lim cn, as a limit of compact connected sets, is also compact and
connected. Since c∞ is not a singleton, it contains at least two and hence three
distinct points x∞, y∞ and z∞.

For each n ∈ N, one can pick three distinct points xn, yn, zn in S1 such that
hn(xn) → x∞, hn(yn) → y∞ and hn(zn) → z∞. Let γn ∈ PSl2R ⊂ PSl2C be
the conformal transformation of S2 that preserves S1 and that sends 0 to xn, 1 to
yn and ∞ to zn. Each map fn := hn ◦ γn : S2 → S2 is still a K-quasiconformal
homeomorphism of S2 such that cn = fn(S

1). We now have fn(0) → x∞, fn(1) →
y∞ and fn(∞) → z∞. Thus Theorem 2.1 applies to the sequence (fn) and yields
the result. �

This proves the first part of Theorem 1.1. To prove the second part of Theorem
1.1, we will use the following characterization of quasicircles due to Ahlfors.

2.3. Ahlfors’ arc condition. We recall that a Jordan arc a ⊂ S2 is a subset of
S2 which is homeomorphic to the closed interval [0, 1].

Definition 2.3. A Jordan curve c ⊂ S2 satisfies the arc condition with constant
A ≥ 1 if, for any pair of points x, z ∈ c delimiting two Jordan arcs a+, a− on c,
their diameters satisfy

min(diam(a+), diam(a−)) ≤ Ad(x, z) .

Theorem 2.4 (Ahlfors; see [1] and [9, Theorem 2.2.5]). A Jordan curve c ⊂ S2 is
a quasicircle if and only if it satisfies the arc condition.

The implied constants depend only on each other.

3. An overview of the proof of Theorem 1.1

We sketch the proof of the second part of Theorem 1.1. It will
consist of four propositions that will be proved in the following
sections.
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We assume that

(3.1)

F is a closed G-invariant subset of K0, which consists only of
Jordan curves and such that, for all A ≥ 1, there exists a Jor-
dan curve in F that does not satisfy Ahlfors’ arc condition with
constant A.

Under this assumption, we want to find a contradiction. The first step is the
following and will be completed in Section 4.

Proposition 3.1 (Two threads with the same limit). Assume (3.1). Then, there
exist a sequence (cn) in F that converges to a Jordan curve c∞ ∈ F , a Jordan arc
a∞ ⊂ c∞ and, for each n ∈ N, two disjoint Jordan arcs an and a′n in cn such that
both sequences (an) and (a′n) converge to a∞ when n → ∞.

c
cn

an

a'n

∞

a∞

y

z

x

t ∞

n

n

n

n

x

Figure 1. Two threads with the same limit. Note that this cannot
happen in a convergent sequence of K-quasicircles.

We will assume from now on, without loss of generality, that the Jordan arc a∞
lies in C ⊂ C ∪ {∞} ∼ S2. What we have in mind to obtain our contradiction
is now to zoom in, that is, to replace each cn by another Jordan curve γncn ∈ F
where γn ∈ PSl2C fixes the point ∞, and examine the behaviour of the arcs γnan
and γna

′
n.

To achieve this goal, we will first associate to each one of the Jordan curves cn
a “pearl necklace”, that is, a sequence of disks roughly joining the endpoints of
a∞ and channelled by the arcs an and a′n (see Figure 2). This necklace will grow
thinner as n → ∞. The precise statement, which constitutes our second step and
will be proved in Section 5, is as follows.

Definition 3.2. Let U � C be an open subset. A necklace N = (D(i)|i ∈ I) in
U is a sequence of open disks D(i) ⊂ U of the complex plane, indexed by a finite
interval I ⊂ Z, and that satisfy the following conditions:

(1) two consecutive disks D(i) and D(i+ 1) intersect orthogonally,
(2) when |i− j| ≥ 2, the disks D(i) and D(j) do not intersect,
(3) for each three consecutive disks, the set ∂D(i) \ (D(i−1) ∪ D(i+1)) is a

disjoint union of two arcs that both meet the boundary ∂U .

The thickness of the necklace N is the ratio

max
i∈I

diamD(i)/ diam

(⋃
i∈I

D(i)

)

where diam denotes the diameter with respect to the Euclidean distance on C. The
necklace is said to be ε-thin if its thickness is bounded by ε.
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Figure 2. A pearl necklace.

Proposition 3.3 (Thin pearl necklaces). Assume (3.1). Then, for each ε > 0,
there exist a Jordan curve cε ∈ F and an ε-thin necklace Nε = (Dε(i)|i ∈ Iε) in
the domain Uε = C \ cε.

As mentioned above, the last step of the proof will consist in zooming in on a
well-chosen pearl of each of these necklaces to obtain a contradiction. To this effect,
we associate to each necklace Nε provided by Proposition 3.3 the sequence

xε = (xε(i)|i ∈ Iε) , where xε(i) = log diamDε(i) ,

of the logarithms of the diameters of the Dε(i)’s.
Our third proposition is a very general statement on families of sequences of real

numbers and will be proved in Section 6.

Proposition 3.4 (Finite sequences of real numbers). Let S be a family of sequences
x = (x(i) | i ∈ Ix) of real numbers, indexed by finite intervals Ix ⊂ Z. Then at least
one of the following three possibilities occurs:

(1) There are pipes in S: there exists a thickness h1 > 0 such that, for any
length �, there exist a sequence x ∈ S and a subinterval J ⊂ Ix with length
|J | = � such that

|x(i)− x(j)| ≤ h1 for any i, j ∈ J .

(2) There are wells in S: for any depth h2 > 0, there exist a sequence x ∈ S
and i < j < k in Ix such that

x(j) < x(i)− h2 and x(j) < x(k)− h2.

(3) All sequences in S are slides: there exist a height h3 ∈ R and a slope
σ > 0 such that for any sequence x ∈ S and any index i0 ∈ Ix such that
x(i0) = max{x(i), i ∈ Ix}, one has

x(i) ≤ x(i0) + h3 − σ|i− i0| for any i ∈ Ix.

By applying Proposition 3.4 to the family SF of finite sequences associated to
the necklaces in Proposition 3.3 we will obtain Proposition 3.5 which provides us
with the desired contradiction.

Proposition 3.5 (Excluding the three cases). Assume (3.1). Then, there are no
pipes in SF . There are no wells in SF . Not all the sequences in SF are slides.

Proposition 3.5 will be proved in Section 7.
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4. Constructing the two threads

Proof of Proposition 3.1. Recall that F ⊂ K0 is a closed G-invariant subset of K0

which consists only of Jordan curves, and that the Jordan curves in F do not satisfy
a uniform Ahlfors’ arc condition. This means that we can find a sequence cn ∈ F
and, for each n ∈ N, a cyclically ordered quadruple (xn, yn, zn, tn) of points on cn
such that

min(d(xn, yn), d(xn, tn)) ≥ n d(xn, zn) .

Note that this forces d(xn, zn) → 0. Replacing if necessary each Jordan curve cn
by γn(cn) ∈ F , where γn ∈ PSl2C is a suitable zoom in on the point xn, we may
assume moreover that

r := infn∈N min(d(xn, yn), d(xn, tn)) is positive .

We want to prove that there exist, for each n ∈ N, two disjoint Jordan arcs an and
a′n in cn that converge to the same Jordan arc a∞ when n → ∞.

The sphere S2 and the space K are compact metric spaces. Going to a subse-
quence, we may thus also assume that:

– there exist three points x∞, y∞ and t∞ in S2 with x∞ �= y∞ and x∞ �= t∞, and
such that

xn → x∞, zn → x∞, yn → y∞, tn → t∞ when n → ∞,

– the sequence of Jordan curves (cn) converges in K. Its limit c∞ is not a singleton
since it contains the points x∞ �= y∞. Since F is a closed subset of K0, the limit
c∞ belongs to F : it is a Jordan curve.

Consider the four Jordan arcs

[xn, yn], [xn, tn], [zn, yn] and [zn, tn].

We shorten each of them, keeping the first endpoint xn or zn, in order to get a
Jordan arc whose diameter is exactly r/2. Going again to a subsequence, we may
assume that each one of these four sequences of shortened arcs converges in K.
Their respective limits α1, α2, α3 and α4 are compact connected subsets of c∞ that
contain x∞ and have diameter r/2 so that they all are Jordan arcs in c∞. Thus
there exists a Jordan arc a∞ ⊂ c∞ that contains x∞ as an endpoint and that is
a subarc of at least two of the limit sets αi (see Figure 1). Proposition 3.1 now
follows from Lemma 4.1. �

Lemma 4.1. Let αn ⊂ S2 be a sequence of Jordan arcs converging to a Jordan arc
α∞. Let a∞ be a Jordan subarc of α∞. Then, there exists a sequence of Jordan
subarcs an ⊂ αn such that an converges to a∞.

Proof. Using Jordan’s theorem, one may assume that α∞ ⊂ S1 and a∞ = [−1, 1].
The proof in this case is left to the reader. �

5. Pearl necklaces

5.1. Normal disks and Thurston’s stratification. Recall that S2 is equipped
with its canonical Möbius structure. Let U ⊂ S2 be a connected domain that
avoids at least two points. W. Thurston introduced a stratification of the domain
U associated to the family of maximal disks D ⊂ U sitting in U . We briefly recall
the construction of this stratification, and the facts we will be using in this paper.
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Any disk D ⊂ S2 carries a conformal hyperbolic metric, whose geodesics are arcs
of circles that cut the boundary ∂D of D orthogonally. The convex hull, for this
metric, of a subset A ⊂ ∂D will be denoted by convD(A) ⊂ D.

Definition 5.1. An open disk D ⊂ U is normal when its boundary ∂D meets ∂U
in at least two points. When D ⊂ U is a normal disk, define

C(D) = convD(∂D ∩ ∂U) .

Note that a normal disk D ⊂ U is maximal among the disks sitting in U .

Proposition 5.2 (W. Thurston). For any point p ∈ U , there exists a unique
normal disk Dp ⊂ U such that p ∈ C(Dp). This disk Dp depends continuously on
the point p ∈ U .

This means that the convex hulls C(D) of all the normal disks provide a strati-
fication of U .

A proof of this proposition is given in [11, Theorem 1.2.7], [12], [7] or [3, Chap-
ter 4]. See also [15] and [8] for other applications of this construction. For the
convenience of the reader we include a short and elementary proof.

Proof of Proposition 5.2. We may assume U ⊂ C.
Uniqueness. Just notice that, for any two open disks D1 and D2 in C, the

convex hulls ConvD1
(∂D1 \D2) and ConvD2

(∂D2 \D1) do not meet.
Existence. Let p ∈ U . We will use the inversion jp : z �→ (z − p)−1 of the

sphere. We introduce the compact subset Kp := jp(S
2 \ U) of C. Recall that there

exists a unique closed disk Δp of C with minimal radius that contains Kp. Moreover
the intersection ∂Δp ∩ ∂Kp is not included in an open arc of ∂Δp whose endpoints
are diametrically opposed. Thus the open disk Dp := j−1

p (S2 � Δp) is a normal
disk of U and the point p belongs to the convex hull C(Dp).

Continuity. Since the compact set Kp depends continuously on the point p,
the disks Δp and Dp also depend continuously on p. �

Notation 5.3. When p ∈ U , we will denote by Cp := C(Dp) ⊂ U the stratum that
contains the point p.

When D ⊂ U is a normal disk, let λ(D) ⊂ U denote the boundary in the disk
D of the convex hull C(D). This boundary λ(D) has a finite or countable number
of connected components, which are arcs of circles.

Assume from now on the domain U to be simply connected. Then, when D ⊂ U
is a normal disk, U \C(D) is not connected. More precisely, we have the following
lemma whose proof is left to the reader.

Figure 3. A normal disk D and the connected components of U \ C(D).
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Lemma 5.4. Let U ⊂ S2 be a simply connected domain that avoids at least two
points, and let D ⊂ U be a normal disk. If ∂D ∩ ∂U contains only two points,
then U \ C(D) has two connected components. If ∂D ∩ ∂U contains at least three
points, then there is a natural bijection between the set of connected components Ω of
U \C(D) and the set of connected components of λ(D). It is given by Ω −→ ∂Ω∩U .

5.2. Monotonous paths. We now introduce monotonous paths in the simply con-
nected domain U .

Definition 5.5. Let x, y, z be three points of U . We say that y lies between x and
z if one cannot find a connected component of U \ Cy that contains both x and z.
A path γ : [0, 1] → U is monotonous if, for any parameters 0 ≤ r ≤ s ≤ t ≤ 1, the
point γ(s) lies between γ(r) and γ(t).

Figure 4. Maximal disks, the stratification and monotonous
paths in a rectangle.

Proposition 5.6 (Monotonous paths). Let U ⊂ S2 be a simply connected domain
that avoids at least two points. Let p, q ∈ U . Then there exists a monotonous path
μ : [0, 1] → U with μ(0) = p and μ(1) = q.

A proof of this proposition is given in [12, Section 11.1], where μ is obtained as
a geodesic for the Thurston metric. Recall that the Thurston metric is a complete
C1,1 metric on U with nonpositive curvature, for which the strata Cp (p ∈ U)
are convex (see [12, Section 5] or [5]; see also [10, Chapter 5] for more general
constructions of monotonous paths).

We will give an elementary proof of Proposition 5.6 in Section 9.

5.3. Pearl necklaces. To a monotonous path between p, q ∈ U , we will associate
a pearl necklace.

Proposition 5.7 (Pearl necklaces). Let U ⊂ S2 be a simply connected domain
that avoids at least two points. Let p, q ∈ U . Then there exists a pearl necklace
(D(i))1≤i≤n in U that joins the points p and q, that is, such that D(1) = Dp and
D(n) ∩Dq �= ∅.

The proof will follow from a series of lemmas that describe the behaviour of the
normal disks along a monotonous path.

Notation 5.8. Let μ : [0, 1] → U be a monotonous path and s ∈ [0, 1], We let Ω−
s

(resp. Ω+
s ) be the connected component of U \ Cμ(s) that meets μ([0, s]) (resp.

μ([s, 1])) if such a connected component does exist. Otherwise we let Ω−
s (resp.

Ω+
s ) be the empty set.
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Roughly, starting at time s, the past of μ lies in Ω−
s and its future lies in Ω+

s .

Lemma 5.9. When 0 ≤ r ≤ s ≤ t ≤ 1, we have the inclusions

Dμ(t) \Dμ(s) ⊂ Ω+
s and Dμ(r) \Dμ(s) ⊂ Ω−

s .

Proof. It suffices to prove the first assertion. Assume that Dμ(s) �= Dμ(t). Then,
Cμ(t) is connected and disjoint from Cμ(s). Since μ(t) ∈ Cμ(t), it follows that

Cμ(t) ⊂ Ω+
s . The result follows since Dμ(t) \Dμ(s) is connected and Cμ(t) does not

entirely lie in Dμ(s). �

Lemma 5.10. Let 0 ≤ r ≤ s ≤ t ≤ 1.
a) We have the inclusion Dμ(r) ∩Dμ(t) ⊂ Dμ(s) .
b) If Dμ(s) meets both Dμ(r) and Dμ(t) and is equal to neither of them, the set

∂Dμ(s) \ (Dμ(r) ∪Dμ(t)) is a disjoint union of two arcs, each of them meeting the
boundary ∂U .

D

r

s

t

D

D

rD Ds

tD

rD Ds

tD

Figure 5. Two forbidden configurations, and a legit one (r < s < t).

Proof. a) Lemma 5.9 ensures that (Dμ(r) ∩Dμ(t)) \Dμ(s) lies in both Ω−
s and Ω+

s ,
hence is empty.

b) If ∂Dμ(s) ∩ ∂U were included in only one arc of ∂Dμ(s) \ (Dμ(r) ∪ Dμ(t)),
then the points μ(r) and μ(t) would belong to the same connected component of
U \ Cμ(s). A contradiction to the monotonicity of μ. �

Lemma 5.11. Let r ∈ [0, 1]. Then, there exists at most one disk Dμ(s), with s ≥ r,
that is orthogonal to the disk Dμ(r).

Proof. Assume that r < s < t and that Dμ(r) is orthogonal to both Dμ(s) and Dμ(t).
Lemma 5.10 forces the inclusion Dμ(t) ⊂ Dμ(s) of these maximal disks, hence the
equality Dμ(t) = Dμ(s). �

Proof of Proposition 5.7. Let p, q ∈ U . According to Proposition 5.6, there exists
a monotonous path μ : [0, 1] → U from p to q. Let t1 = 0 and define recursively,
when it is possible, ti+1 ∈ [ti, 1] as the only parameter in the future of ti for which
the disks D(i) := Dμ(ti) and D(i+ 1) := Dμ(ti+1) are orthogonal (Lemma 5.11).

We end up with a chain of normal disks (D(i)), where i ≥ 1. Since the distance of
the image μ([0, 1]) ⊂ S2 to cU is nonzero, the diameters of these disks are uniformly
bounded below, hence the orthogonality of consecutive disks ensures that this chain
has finite cardinality n.

By construction, there is no parameter t ∈ [tn, 1] with Dμ(t) orthogonal to D(n).
Hence, since the normal disk Dx depends continuously on the point x ∈ U , it follows
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that the disk D(n) intersects Dμ(t) for every t ∈ [tn, 1]. In particular, D(n) meets
Dq.

We must now prove that this chain is a necklace in U . Conditions (1) and (3) in
Definition 3.2 follow from the construction and from Lemma 5.10. We now check
condition (2). Let 1 ≤ i < j ≤ n, with j − i ≥ 2; we want to prove that D(i) and
D(j) are disjoint. According to Lemma 5.10, the intersectionD(i)∩D(j) is included
in D(i) ∩D(i+ 2). This is empty since both D(i) and D(i+ 2) intersect D(i+ 1)
orthogonally and since, by the same Lemma 5.10, the set ∂D(i+1)\(D(i)∪D(i+2))
is a union of two disjoint arcs. �

5.4. Thin necklaces.

We prove Proposition 3.3. Recall that we assume that the arc a∞
provided by Proposition 3.1 lies in C.

As mentioned in the previous section, there always exist pearl necklaces in any
domain U � C. However the thickness of these necklaces (see Definition 3.2) may
well be uniformly bounded below. It is the case for example when U is a triangle.
On the contrary, one can find arbitrarily thin necklaces in a domain whose boundary
is a piecewise C1 curve that admits a cusp.

x

za
+

a-

a
+ z

x

a-

Figure 6. A triangle satisfies the Ahlfors’ arc condition, and it
does not contain arbitrarily thin necklaces. A Jordan domain with
a cusp does not satisfy the Ahlfors’ arc condition, and it contains
arbitrarily thin necklaces.

Let (cn) be the sequence of Jordan curves in F provided by Proposition 3.1.
We will use Proposition 5.7 to construct a necklace of S2 \ cn that is drawn within
a small neighbourhood of the arc a∞ and that roughly joins its endpoints. This
necklace will grow thinner when n → ∞. We begin with a general lemma.

Lemma 5.12. Let a ⊂ C be a Jordan arc. Let ε > 0.

(1) There exists η > 0 such that the diameter of any disk lying in the η-
neighbourhood of a is at most ε.

(2) There exists r > 0 such that, for any Jordan curve Γ sitting in the r-
neighbourhood of a, the bounded connected component of C \ Γ lies in the η-neigh-
bourhood of the arc a.

Proof. (1) If Vη(a) denotes the η-neighbourhood of a, one has a =
⋂

η>0 Vη(a).
Proceed by contradiction and assume that there exist r0 > 0 and a sequence of
disks D(xn, r0) of center xn ∈ C and radius r0 that are included in V1/na. The
sequence (xn)n≥1 being bounded, we may assume that it converges to x∞. We
would then have D(x∞, r0) ⊂ a, a contradiction.
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(2) The statement is obvious when a = [0, 1] is a segment. Jordan’s theorem
yields a homeomorphism ϕ : C → C with ϕ(a) = [0, 1]. The result follows, since
both ϕ and ϕ−1 are locally uniformly continuous. �

We may now proceed with our construction.

Proof of Proposition 3.3. Let (cn) be the sequence of Jordan curves in F and a∞
the arc of the limit curve c∞ provided by Proposition 3.1. Let p, q denote the
endpoints of a∞. Let ε > 0 be very small with respect to d(p, q), and let r, η be as
in Lemma 5.12. Note that r ≤ η ≤ ε. By construction, for n large enough, there
exist disjoint arcs an and a′n of cn that lie in the r-neighbourhood of a∞ and meet
both spheres S(p, r) and S(q, r).

Cutting out both ends of an and a′n if necessary, we may moreover assume that
an (resp. a′n) has an endpoint xn (resp. x′

n) on the sphere S(p, r), an endpoint yn
(resp. y′n) on the sphere S(q, r), and is otherwise drawn in S2 \D(p, r) ∪D(q, r).
Choose an arc αn,p on S(p, r) joining xn and x′

n, and an arc αn,q on S(q, r) joining
yn and y′n. Then the union Γn := an ∪ a′n ∪αn,p ∪αn,q is a Jordan curve which lies
in the r-neighbourhood of a∞. It thus follows from Lemma 5.12 that the bounded
component Bn of C \ Γn lies in the η-neighbourhood of a∞.

Bn
p qa∞

cn

Γnan

a'n

Figure 7. The arcs an and a′n on the Jordan curves cn and Γn,
and the box Bn.

Observe that some arcs of cn may enter the box Bn. We thus introduce the
connected component Un of Bn \ cn whose closure Un contains the arc an. We
claim that such a connected component Un does exist. This fact is easy when the
quadrilateral Bn is a rectangle, and the general case follows since Jordan’s theorem
provides us with a homeomorphism between Bn and a rectangle. Note that, since
S2 \Un is connected, the domain Un is simply connected. A glance at Figure 7 may
be useful, but keep in mind that the closure Un does not always contain the arc a′n.

Choose two points pn and qn in Un such that d(p, pn) = r+ε and d(q, qn) = r+ε.
Then, Proposition 5.7 provides us with a pearl necklaceNn = (Dn(i) | i ∈ In) in the
simply connected domain Un, joining pn to qn. Since Un ⊂ Bn, Lemma 5.12 ensures
that the diameters of all the disks that constitute this necklace are at most ε.

We are not done yet, since Nn is only a necklace in the domain Un. Indeed the
contact points of the disks Dn(i) with the boundary ∂Un, which occur in condition
(3) of Definition 3.2, may either lie in cn (which is good) or on one of the arcs αn,p

or αn,q . Hence we choose a subnecklace Nn ⊂ Nn, whose first disk meets the sphere
S(p, r+ 2ε) and whose last disk meets the sphere S(q, r+ 2ε), and that is minimal
with respect to these properties. This necklace Nn is also a necklace in S2 \ cn.
This necklace is ε/(d(p, q)− 4 ε)-thin as required. �
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6. Finite sequences of real numbers

We prove here an elementary fact on finite sequences of real numbers.

Proof of Proposition 3.4. Assume that there are no wells. This means that there
exists h2 > 0 such that, for any sequence x = (x(i))i∈Ix ∈ S and i < j < k, one has
either x(i) ≤ x(j) + h2 or x(k) ≤ x(j) + h2.

Assume that there are no pipes either. Choose h1 = 2h2. Then, there exists
a length � such that any subsequence (x(i))i∈J ⊂ (x(i))i∈Ix — where x ∈ S and
J ⊂ Ix is a subinterval of length at least � — has an oscillation greater than 2h2:
there exist i, j ∈ J with |x(i)− x(j)| ≥ 2h2.

We will prove that each sequence in S is a slide, with height h3 := h2 and slope
σ := h2

� . Thus let x = (x(i))i∈I ∈ S and choose i0 such that x(i0) = maxi∈Ix x(i).
Let us work for example in the future of i0.

Assume that [i0, i0 + �] ⊂ Ix. Since there are no pipes and all x(i) are bounded
by x(i0), there exists i1 ∈ [i0, i0 + �] such that x(i1) ≤ x(i0)− 2h2. Since there are
no wells, this implies that x(i) ≤ x(i0)− h2 for any i ∈ Ix with i ≥ i1.

Assume that [i1, i1 + �] ⊂ Ix. Denying again the existence of pipes and wells
yields an i2 ∈ [i1, i1+�] with x(i2) ≤ x(i0)−3h2, and ensures that x(i) ≤ x(i0)−2h2

for i ≥ i2. We go on and, as long as [ik−1, ik−1 + �] ⊂ Ix, we get an integer ik in
[ik−1, ik−1 + �] such that

x(i) ≤ x(i0)− k h2 for any i ∈ Ix with i ≥ ik.

For all i ≥ i0 in Ix, one can choose k such that i ∈ [ik, ik + �]. Note that, by
construction, ik ≤ i0 + k�. Hence this k is larger than i−i0−�

� , and one has as
required

x(i) ≤ x(i0)− i−i0−�
� h2 ≤ x(i0) + h2 − h2

� |i− i0|.
�

7. Pipes, wells and slides

We put together the results of Sections 5.4 and 6 to finally prove
Proposition 3.5, and hence Theorem 1.1.

Proof of Proposition 3.5. Proposition 3.3 provides us, for all ε > 0, with a Jordan
curve cε ∈ F and an ε-thin necklace Nε = (Dε(i)| i ∈ Iε) in S2 � cε. We let SF
denote the family of sequences xε = (xε(i)| i ∈ Iε) associated to the necklaces Nε,
with xε(i) = log diamDε(i) and apply Proposition 3.4 to SF .

� Suppose that there exist pipes in SF . Shortening and shifting the intervals Iε,
we may extract from the family {cε , ε > 0} a sequence of Jordan curves (cn)n∈N

and corresponding necklaces Nn = (Dn(i) | |i| ≤ n) such that the ratios

diamDn(i)/diamDn(j) (for n ∈ N and |i|, |j| ≤ n)

of the diameters of these disks are uniformly bounded between 1/δ and δ for some
δ > 1.

Applying a suitable conformal transformation of S2 that fixes ∞, we further-
more assume that the middle disk Dn(0) of each necklace is always the unit disk
D(0, 1) ⊂ C. Together with condition (1), this implies that, for a fixed i ∈ Z,
all the disks Dn(i) (where n ≥ |i|) live in a compact set of disks of the complex
plane. Using a diagonal argument we may thus assume that, for each i ∈ Z, the
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sequence (Dn(i))n≥|i| converges to a disk D∞(i) with center ωi and diameter be-
tween 1/δ and δ. Going again to a subsequence, we may also assume that the
sequence (cn)n∈N converges to c∞ ∈ K when n → ∞. The bounds on the diameters
of the Dn(i)’s and condition (2) force |ωi| → ∞ when |i| → ∞, so that the broken
line L =

⋃
i∈Z

[ωi, ωi+1] ⊂ C yields a proper embedding of R into C. By Jordan’s
theorem, C \ L has two connected components. As a consequence of condition (3),
the limit curve c∞ visits both connected components of C \ L. This ensures that
the limit c∞ is not a singleton, hence is a Jordan curve. However since, for all n,
cn avoids the open set

⋃
i Dn(i), the limit curve c∞ does not meet L and hence

cannot be a Jordan curve (see the first drawing in Figure 8), a contradiction.

� Assume now that there are wells in SF . We proceed as in the previous case. This
time, we shift the intervals so that the bottom of each well occurs for the index
0, and apply a conformal normalisation so that the corresponding disk Dn(0) is
always the unit disk D(0, 1).

We obtain this time a sequence of Jordan curves cn ∈ F , a nondecreasing se-
quence of finite intervals In that contains 0, and a sequence of necklaces Nn =
(Dn(i) | i ∈ In) in S2 \ cn such that Dn(0) = D(0, 1), and such that the logarithms
of the diameters of these disks, xn(i) := log diamDn(i), satisfy

xn(0) = 0, xn(i) ≥ 0 for i in In, and xn(i) ≥ n for both endpoints i ∈ In.

Let I ⊂
⋃

n In be the maximal subinterval containing 0 such that the sequence
n �→ xn(i) is bounded when i is an interior point of I. Note that this interval may
be finite or infinite. By construction for any endpoint i of I the sequence n �→ xn(i)
is unbounded. After going through a diagonal process, the sequence of disks Dn(i)
converges, when n → ∞, to a disk D∞(i) when i is an interior point of I and to a
half-plane D∞(i) when i is an endpoint of I.

The conclusion follows as in the previous case: the limit c∞ = lim
n→∞

cn avoids the

shaded area and visits both components of its complementary set and hence cannot
be a Jordan curve (see the second and third drawings in Figure 8), a contradiction.

c

c

∞

∞

c∞

c∞

Figure 8. The limit curve and the limit of necklaces when respec-
tively I = Z, I is finite, and I = {−1, 0, 1} in which case
∂D∞(−1) = ∂D∞(1).

� Finally, if all sequences in SF were slides with height h3 ≥ 0 and slope σ > 0,
the ratio inverse of the thickness would be uniformly bounded,

diam

(⋃
i∈Iε

Dε(i)

)
/ max

i∈Iε
diam (Dε(i)) ≤ 2

∞∑
i=0

eh3e−σi ≤ 2eh3/(1−e−σ) ,

a contradiction. �
This also ends the proof of Theorem 1.1.
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8. Cantor sets and the conformal group

In this section we prove an analog of Theorem 1.1 where Jordan
curves are replaced by Cantor sets.

8.1. Quasi-middle-third Cantor sets. Recall that a nonempty compact set C
is called a Cantor set if it is perfect and totally disconnected. The main example
is the middle-third Cantor set

C0 := {
∑

n≥1 an3
−n | an = 0 or 2} ⊂ [0, 1].

Let K ≥ 1. We will say that a Cantor set C ⊂ S2 is a K-quasi-middle-third Cantor
set if C is the image C = f(C0) of the middle-third Cantor set C0 ⊂ S2 under a
K-quasiconformal homeomorphism f : S2 → S2.

The following theorem is an analog of Theorem 1.1.

Theorem 8.1. Let K ≥ 1. The set of all K-quasi-middle-third Cantor sets of S2

is a closed G-invariant subset of K0.
Conversely, any closed G-invariant subset of K0 which consists only of Cantor

sets is included in the set of K-quasi-middle-third Cantor sets for some K ≥ 1.

Corollary 8.2. A Cantor set C ⊂ S2 is a quasi-middle-third Cantor set if and
only if its orbit closure GC in K consists only of points and Cantor sets.

We will just sketch the proof of Theorem 8.1 which is much shorter than the
proof of Theorem 1.1. It follows from Lemmas 8.5, 8.6 and 8.7, combined with
MacManus’ condition described below.

8.2. MacManus’ condition. Here is an analog of Ahlfors’s arc condition (Theo-
rem 2.4) for Cantor sets. We recall that d denotes the canonical Riemannian metric
on S2 and we denote by B(x, r) the balls and by diamd the diameter with respect
to this metric.

Definition 8.3. Let A > 1. A compact set C ⊂ S2 is A-uniformly perfect if, for
all x in C and all 0 < r < diamd(C), one has

B(x, r) ∩ C �⊂ B(x, r/A).

A compact set C ⊂ S2 is A-uniformly disconnected if, for all x in C and all r > 0,
the connected component of x in the r/A-neighbourhood of C is included in B(x, r).

Theorem 8.4 (MacManus; see [14, Theorem 3]). A compact subset C ⊂ S2 is a
quasi-middle-third Cantor set if and only if it is uniformly perfect and uniformly
disconnected. The implied constants depend only on each other.

Let us also mention two related results: another characterization of quasi-middle-
third Cantor sets (see [4, Corollary 2.1]), and a similar characterization of all com-
pact metric spaces that are quasisymmetric to the middle-third Cantor set (see
[6, Chapter 15]).

8.3. Limits of Cantor sets. The direct implication in Theorem 8.1 is a special
case of the following analog of Proposition 2.2.

Lemma 8.5 (Limits of quasi-middle-third Cantor sets). Let (Cn)n≥1 be a sequence
of K-middle-third Cantor sets in S2 that converges in K to a compact set C∞ ⊂ S2
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which is not a point. After going to a subsequence if necessary, there exist K-
quasiconformal homeomorphisms fn : S2 → S2 and f∞ : S2 → S2 with Cn = fn(C0),
C∞ = f∞(C0), and such that fn → f∞ uniformly on S2.

Proof. The proof is the same as for Proposition 2.2 using the “uniformly perfect”
part of MacManus’ condition to know that the limit C∞ contains at least three
points. �

The converse implication in Theorem 8.1 follows from MacManus’ condition and
the following two lemmas.

Lemma 8.6 (Nonuniformly perfect sequences of compact sets). Let (Cn)n≥1 be a
sequence of compact subsets of S2 such that Cn is not n-uniformly perfect. After
going to a subsequence if necessary, there exist elements γn ∈ G such that (γnCn)
converges in K to a nonperfect set C∞ containing at least two points.

Proof. By assumption, there exist xn in Cn and 0 < rn < diam(Cn) such that
B(xn, rn)∩C ⊂ B(xn, rn/n). Fix x0 in S2 and choose γn ∈ G such that γnxn = x0

and γn(B(xn, rn)) = B(x0, 1). Going to a subsequence, (γnCn) converges to a
compact set C∞ of S2 which contains x0 as the only point in B(x0, 1), and is not
a singleton. Hence the set C∞ is not perfect. �

The second lemma is very similar to the first one.

Lemma 8.7 (Nonuniformly disconnected sequences of compact sets). Let (Cn)n≥1

be a sequence of compact subsets of S2 such that Cn is not n-uniformly disconnected.
After going to a subsequence if necessary, there exist elements γn ∈ G such that
(γnCn) converges in K to a not totally disconnected set C∞.

Proof. The argument is also very similar. By assumption, there exist xn in Cn,
0 < rn < π and a finite subset Fn ⊂ Cn containing xn such that the rn/n-
neighbourhood of Fn is connected and meets the sphere S(xn, rn). Fix x0 in S2

and choose γn ∈ G such that γnxn = x0 and γn(B(xn, rn)) = B(x0, 1). Going to
a subsequence, (γnCn) converges to a compact set C∞ of S2 and (γnFn) converges
to a compact set F∞ ⊂ C∞ which contains x0, is connected and meets the sphere
S(x0, 1). Hence the set C∞ is not totally disconnected. �

This ends the proof of Theorem 8.1.

9. Thurston’s lamination and monotonous paths

We give in this last section an elementary and self-contained proof
of the existence of monotonous paths (Proposition 5.6).

Throughout this section, U ⊂ S2 will denote a simply connected domain that
avoids at least two points. We keep the notation of Sections 5.1 and 5.2.

9.1. Thurston’s lamination. Thurston’s lamination is the lamination Λ of U by
the arc of circles equal to the connected component of λ(Dp) for some p ∈ U (see
Lemma 5.4).

Definition 9.1. Let A be an arc of the lamination Λ. Let a ∈ A be a point on
this arc. A transverse τ to (A, a) is a nontrivial segment on a geodesic of Dp that
meets A orthogonally at the point a and that admits this point a as an endpoint.
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The following proposition will be useful for the construction of monotonous
paths.

Proposition 9.2. Let A ∈ Λ be an arc of the lamination, let Ω be one of the
connected components of U \A and let a1, a2 ∈ A be two points on this arc. Then,
there exist:

• Transverses τi to (A, ai) with second endpoints xi in Ω (for i = 1, 2) with
Cx1

= Cx2
.

• A path γ ⊂ Cx1
from x1 to x2 satisfying the following property. Let B ⊂ Ω

be the closed region bounded by the segments [a1, a2] ⊂ A, the transverses τ1 and τ2
and the path γ. Then each stratum Cm that intersects B also intersects both τ1 and
τ2.

The closed region B is called a well-combed box for ([a1, a2],Ω).

x

x
a 1

2ξ

ξ
1

1

2
a2

A

B

Figure 9. A box.

We begin with a lemma.

Lemma 9.3. Let A be an arc of the lamination Λ, a ∈ A, and let τ be a transverse
to (A, a). Assume that Ca ∩ τ = {a}.

Let p, q denote the endpoints of A. Let ε > 0. Then, when x ∈ τ is close to a,
the set of contact points ∂Dx ∩ ∂U meets both balls B(p, ε) and B(q, ε) and lies in
their union.

In particular, if (an) is a sequence of points on the transverse τ that converges
to a, then the sequence of convex hulls (Can

) converges to A.

Note that when Ca ∩ Ω �= ∅ and the transverse τ is short enough, then τ lies in
Ca. In this case, Cx = Ca for any x ∈ τ .

Proof. Let p, q ∈ ∂Da ∩ ∂U denote the endpoints of the arc A. Let (an) be a
sequence of points of τ that converges to a.

To begin with, we assume that each point an belongs to an arc An of the lami-
nation Λ. Both endpoints of An lie in ∂U ; thus the arc An intersects the boundary
∂Da in two points pn and qn. Going to a subsequence, we may assume that (pn) and
(qn) respectively converge to p̃ ∈ ∂Da and q̃ ∈ ∂Da. We claim that {p, q} = {p̃, q̃}.

Indeed, the sequence of disks (Dan
) converges to Da (see Proposition 5.2); thus

convDan
(pn, qn) −→ convDa

(p̃, q̃) .
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Figure 10. Transverses.

Since the points an belong to convDan
(pn, qn) and since the point a belongs

to convDa
(p, q) while, by construction, the points pn and qn belong to the same

connected component of ∂Da \ {p, q}, we infer that {p, q} = {p̃, q̃}.
We now turn to the general case. Note that we can find a sequence αn ∈ τ such

that αn �= a, (αn) converges to a and αn belongs to an arc Aαn
of the lamination

Λ. For x sitting in the segment ]a, αn[⊂ τ , the portion Cx ∩Da is included in the
region delimited in Da by the arcs A and Aαn

. When n is large, we just proved
that A and Aαn

are close. The result follows as above, arguing that the disk Dx

depends continuously on x. �

Proof of Proposition 9.2. Note that we have Da1
= Da2

and Ca1
= Ca2

. The result
is obvious when A �= Ca1

and Ω is the connected component of U \A that intersects
Ca1

since, in this case, we may find a box B that lies in Ca1
.

Assume now that Ω does not intersect Ca1
, and let [a1, ξ1[ and [a2, ξ2[ respectively

denote the geodesic rays of Da1
that are orthogonal to A at the points a1 (resp.

a2) and point towards Ω (see Figure 9).
Lemma 9.3 provides a point x1 ∈ ]a1, ξ1[ such that all the Cx’s, where x ∈

[a1, x1] ⊂ τ1, are close enough to A so that they intersect ]a2, ξ2[. We may even
assume that Cx1

is an arc and let x2 := Cx1
∩ T2. If x1 is close to a1, then x2 is

close to a2 and all the Cy’s — where y ∈ [a2, x2] ⊂ τ2 — do intersect τ1. We may
then choose τ1 = [a1, x1] and τ2 = [a2, x2]. �

9.2. Piecewise monotonous paths. Recall that a path γ : [0, 1] → U is monoto-
nous if, for any parameters 0 ≤ r ≤ s ≤ t ≤ 1, the point γ(s) lies between γ(r) and
γ(t) (see Definition 5.5). To strengthen our intuition, we first observe the following.

Lemma 9.4. A monotonous path γ : [0, 1] → U with endpoints x and z crosses a
convex hull Cy if and only if y lies between x and z.

Proof. By definition of monotony, we know that γ(t) lies between x and z for any
0 ≤ t ≤ 1. Conversely, let y be a point of U that lies between x and z and such that
Cx �= Cy and Cy �= Cz. This means that x and y belong to two different connected
components of U \Cy, hence the path γ, which goes from x to z, must cross Cy. �

Our aim in this section is to prove that U is monotonous-path-connected (this is
Proposition 5.6). To prove this result, we will use the following alternative definition
of monotony.
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Proposition 9.5. A path γ : [0, 1] → U is monotonous if and only if it cuts each
Cp only once, namely if, for any point p ∈ U , the set γ−1(Cp) ⊂ [0, 1] is connected.

Proof. Let γ be monotonous. We proceed by contradiction, and assume that there
exist r < s < t in [0, 1] such that both x = γ(r) and z = γ(t) lie in Cx, while
y = γ(s) /∈ Cx. Since γ is monotonous, we know that x and z lie in two distinct
connected components of U \ Cy. This is a contradiction since Cx ⊂ U \ Cy is
connected.

Assume that γ : [0, 1] → U is not monotonous; we may assume with no loss
of generality that both points x = γ(0) and z = γ(1) lie in the same connected
component Ω of U \ Cy, where y := γ(1/2). Define

t1 = inf {t > 0 | γ(t) ∈ Cy} , b1 = γ(t1) ,

t2 = sup{t < 1 | γ(t) ∈ Cy} , b2 = γ(t2) .

x

a1

2

x1
C

Cm

x1

2b

Figure 11. Equivalent definition of monotony.

It follows from the assumption and Lemma 5.4 that the points b1 and b2 belong
to the same arc A ⊂ λ(Dy) of the lamination Λ. Pick two points a1 and a2 on A
so that the segment [b1, b2] ⊂ A lies in the open segment ]a1, a2[ ⊂ A. Proposition
9.2 provides a well-combed box B for ([a1, a2],Ω). Observe that any Cm that meets
the transverse τ1 at an interior point disconnects the box B. Choosing Cm ⊂ Ω
close enough to A, this ensures that there exist s1 ∈ ]0, t1[ and s2 ∈ ]t2, 1[ such that
γ(s1) and γ(s2) both lie in Cm, hence that γ−1(Cm) is not connected. �

Corollary 9.6. Let A ∈ Λ be an arc of the lamination and a ∈ A. Let τ and τ ′ be
transverses to (A, a) corresponding to each connected component of U \A. If these
transverses are short enough, their union τ ∪ τ ′ is the image of a monotonous path.

Proof. Proposition 9.2 implies that both τ and τ ′ are images of monotonous paths.
The equivalent definition of monotony provided by Proposition 9.5 implies that
their union τ ∪ τ ′ is also the image of a monotonous path. �

Lemma 9.7. The domain U is locally monotonous-path-connected: each point x ∈
U admits arbitrarily small neighbourhoods V such that any pair of points y, z ∈ V
may be joined by a monotonous path.
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Proof. Assume first that x belongs to the interior of Cx. Then, we may take for V
any neighbourhood of x included in Cx.

Suppose now that x belongs to an arc A of the lamination. Pick two points a1 and
a2 on A such that x lies in the open segment ]a1, a2[ ⊂ A. For the segment [a1, a2],
and each one of the connected components Ω of U \A, Proposition 9.2 provides us
with a well-combed box. The union of these two boxes is a neighbourhood V of
x. It can be made arbitrarily small by choosing the points ai close to x and the
transverses short. We claim that V is monotonous-path-connected.

Let indeed y, z ∈ V . Choose paths γy ⊂ Cy∩V and γz ⊂ Cz∩V that respectively
join the points y and z to points y1 and z1 that lie on one of the transverses to (A, a1)
that bound the domain V . It follows from Corollary 9.6 that the concatenated path
μ = γ−1

z ∗ [y1, z1] ∗ γy is monotonous. �

A

z y
1

z

1

a

a

2

1

V

x

μ
y

Figure 12. A neighbourhood of x that is monotonous-path-connected.

Definition 9.8. A path γ : [0, 1] → U is piecewise-monotonous if there exists an
interval subdivision 0 = t0 < t1 · · · < tn = 1 such that each restriction γ|[ti,ti+1] is
a monotonous path for i = 0, · · · , n− 1.

Corollary 9.9. The domain U is piecewise-monotonous-path connected.

Proof. The proof is an immediate consequence of Lemma 9.7, since U is connected.
�

9.3. Monotonous paths.

Proof of Proposition 5.6. We just proved that U is piecewise-monotonous-path con-
nected. The fact that U is monotonous-path-connected will thus be an immediate
consequence of the following proposition. �

Proposition 9.10. Let x, y and z be three points in U . Assume that there exists
a monotonous path γ1 from x to y and a monotonous path γ2 from y to z. Then,
there exists a monotonous path from x to z.

Proof. Let both paths γi (i = 1, 2) be parameterized by [0, 1].
(1) Assume first that y lies inbetween x and z. We claim that, in this case, the

concatenated path γ := γ2 ∗ γ1 is monotonous. Were it not the case, Proposition
9.5 would provide a point p ∈ U (with p /∈ Cy) such that γ−1(Cp) is not connected.

Since both paths γ1 and γ2 are monotonous, this forces both γ−1
1 (Cp) and γ−1

2 (Cp)
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Figure 13. A piecewise-monotonous path yields a monotonous
one ((1) and (2)).

to be nonempty. Hence the stratum Cp, which is connected, would intersect two
distinct connected components of U \ Cy. This is a contradiction.

(2) We now assume that x lies inbetween y and z. Since the path γ2 is monot-
onous, Lemma 9.4 ensures that there exists t0 ∈ [0, 1] with γ2(t0) ∈ Cx. Choose a
path γ3 : [0, 1] → Cx from x to γ2(t0). Then, the concatenated path (γ2)|[t0,1] ∗ γ3
joins x to z and is monotonous.

In case z lies inbetween x and y, the proof is similar.
(3) We now proceed with the last configuration, where none of the points x, y, z

lies inbetween the other two. We want to produce a monotonous path from x to z.
As above, we will construct our monotonous path from x to z by cutting out a

subpath of γ2 ∗ γ1, and replacing it by a shortcut that lies in a stratum. Lemma
9.4 ensures that

J1 := {s ∈ [0, 1] | ∃t ∈ [0, 1] with Cγ1(s) = Cγ2(t)}

is a subinterval of [0, 1] containing 1 and that

J2 := {t ∈ [0, 1] | ∃s ∈ [0, 1] with Cγ1(s) = Cγ2(t)}

is a subinterval containing 0. Define T1 = inf J1 and T2 = sup J2.

x

y

z

1

2

Figure 14. A piecewise-monotonous path yields a monotonous one (3).

Since the normal disk Dx depends continuously on x ∈ U (see Proposition 5.2),
it follows that Dγ1(T1) = Dγ2(T2), so that Cγ1(T1) = Cγ2(T2). Now let γ3 be a path
drawn in the stratum Cγ1(T1) and that goes from γ1(T1) to γ2(T2). The choice of
T1 and T2 and Proposition 9.5 ensures that the path μ := γ2|[T2,1] ∗ γ3 ∗ γ1|[0,T1],
that goes from x to z, is monotonous. �
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