Quasicircles and the conformal group
HTML articles powered by AMS MathViewer
- by Yves Benoist and Dominique Hulin PDF
- Conform. Geom. Dyn. 20 (2016), 282-302 Request permission
Abstract:
We prove that a Jordan curve in the 2-sphere is a quasicircle if and only if the closure of its orbit under the action of the conformal group contains only points and Jordan curves.References
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Alexander M. Blokh, Robbert J. Fokkink, John C. Mayer, Lex G. Oversteegen, and E. D. Tymchatyn, Fixed point theorems for plane continua with applications, Mem. Amer. Math. Soc. 224 (2013), no. 1053, xiv+97. MR 3087640, DOI 10.1090/S0065-9266-2012-00671-X
- Petra Bonfert-Taylor and Edward C. Taylor, Quasiconformally homogeneous planar domains, Conform. Geom. Dyn. 12 (2008), 188–198. MR 2461511, DOI 10.1090/S1088-4173-08-00189-6
- Martin Bridgeman and Richard D. Canary, The Thurston metric on hyperbolic domains and boundaries of convex hulls, Geom. Funct. Anal. 20 (2010), no. 6, 1317–1353. MR 2738995, DOI 10.1007/s00039-010-0102-7
- Guy David and Stephen Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure. MR 1616732
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces [MR0903852], Fundamentals of hyperbolic geometry: selected expositions, London Math. Soc. Lecture Note Ser., vol. 328, Cambridge Univ. Press, Cambridge, 2006, pp. 117–266. MR 2235711
- D. B. A. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305–336. MR 2052356, DOI 10.4007/annals.2004.159.305
- Frederick W. Gehring and Kari Hag, The ubiquitous quasidisk, Mathematical Surveys and Monographs, vol. 184, American Mathematical Society, Providence, RI, 2012. With contributions by Ole Jacob Broch. MR 2933660, DOI 10.1090/surv/184
- Henri Gillet and Peter B. Shalen, Dendrology of groups in low $\textbf {Q}$-ranks, J. Differential Geom. 32 (1990), no. 3, 605–712. MR 1078160
- Yoshinobu Kamishima and Ser P. Tan, Deformation spaces on geometric structures, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 263–299. MR 1208313, DOI 10.2969/aspm/02010263
- Ravi S. Kulkarni and Ulrich Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994), no. 1, 89–129. MR 1273468, DOI 10.1007/BF02572311
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Paul MacManus, Catching sets with quasicircles, Rev. Mat. Iberoamericana 15 (1999), no. 2, 267–277. MR 1715408, DOI 10.4171/RMI/256
- Lex G. Oversteegen and Edward D. Tymchatyn, Extending isotopies of planar continua, Ann. of Math. (2) 172 (2010), no. 3, 2105–2133. MR 2726106, DOI 10.4007/annals.2010.172.2105
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
Additional Information
- Yves Benoist
- Affiliation: Département de Mathématiques, Université Paris-Sud, Orsay 91405, France
- MR Author ID: 213892
- Email: yves.benoist@math.u-psud.fr
- Dominique Hulin
- Affiliation: Département de Mathématiques, Université Paris-Sud, Orsay 91405, France
- MR Author ID: 89710
- Email: dominique.hulin@math.u-psud.fr
- Received by editor(s): November 4, 2016
- Published electronically: November 15, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Conform. Geom. Dyn. 20 (2016), 282-302
- MSC (2010): Primary 30C62; Secondary 57M60
- DOI: https://doi.org/10.1090/ecgd/303
- MathSciNet review: 3572282