Mating, paper folding, and an endomorphism of $\mathbb {P}\mathbb {C}^2$
HTML articles powered by AMS MathViewer
- by Volodymyr Nekrashevych PDF
- Conform. Geom. Dyn. 20 (2016), 303-358 Request permission
Abstract:
We are studying topological properties of the Julia set of the map $F(z, p)=\left (\left (\frac {2z}{p+1}-1\right )^2, \left (\frac {p-1}{p+1}\right )^2\right )$ of the complex projective plane $\mathbb {P}\mathbb {C}^2$ to itself. We show a relation between this rational function and an uncountable family of “paper folding” plane filling curves.References
- Laurent Bartholdi, FR, GAP package functionally recursive groups. \verb!http://laurentbartholdi.github.io/fr/chap0.html!, 2014.
- Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Acta Math. 197 (2006), no. 1, 1–51. MR 2285317, DOI 10.1007/s11511-006-0007-3
- Laurent Bartholdi and Volodymyr V. Nekrashevych, Iterated monodromy groups of quadratic polynomials. I, Groups Geom. Dyn. 2 (2008), no. 3, 309–336. MR 2415302, DOI 10.4171/GGD/42
- Xavier Buff, Adam Epstein, Sarah Koch, and Kevin Pilgrim, On Thurston’s pullback map, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 561–583. MR 2508269, DOI 10.1201/b10617-20
- Xavier Buff, Adam L. Epstein, and Sarah Koch, Twisted matings and equipotential gluings, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), no. 5, 995–1031 (English, with English and French summaries). MR 3088265, DOI 10.5802/afst.1360
- Chandler Davis and Donald E. Knuth, Number representations and dragon curves-I, J. Recreational Math. 3 (1970), no. 2, 66–81. MR 3287868
- John Erik Fornæss and Nessim Sibony, Complex dynamics in higher dimension, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 273–296. MR 1748606
- Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms. MR 0378456
- Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983, DOI 10.1007/978-3-662-03582-5
- Sarah Koch, Teichmüller theory and critically finite endomorphisms, Adv. Math. 248 (2013), 573–617. MR 3107522, DOI 10.1016/j.aim.2013.08.019
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- John Milnor, Pasting together Julia sets: a worked out example of mating, Experiment. Math. 13 (2004), no. 1, 55–92. MR 2065568, DOI 10.1080/10586458.2004.10504523
- Y. Muntyan and D. Savchuk. AutomGrp GAP package for computation in groups and semigroups generated by automata. \verb!http://www.gap-system.org/Packages/automgrp.html!, 2014.
- Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164, DOI 10.1090/surv/117
- Volodymyr Nekrashevych, A minimal Cantor set in the space of 3-generated groups, Geom. Dedicata 124 (2007), 153–190. MR 2318543, DOI 10.1007/s10711-006-9118-4
- Volodymyr Nekrashevych, Symbolic dynamics and self-similar groups, Holomorphic dynamics and renormalization, Fields Inst. Commun., vol. 53, Amer. Math. Soc., Providence, RI, 2008, pp. 25–73. MR 2477417
- Volodymyr Nekrashevych, A group of non-uniform exponential growth locally isomorphic to $\textrm {IMG}(z^2+i)$, Trans. Amer. Math. Soc. 362 (2010), no. 1, 389–398. MR 2550156, DOI 10.1090/S0002-9947-09-04825-9
- Volodymyr Nekrashevych, Iterated monodromy groups, Groups St Andrews 2009 in Bath. Volume 1, London Math. Soc. Lecture Note Ser., vol. 387, Cambridge Univ. Press, Cambridge, 2011, pp. 41–93. MR 2858850
- Volodymyr Nekrashevych, The Julia set of a post-critically finite endomorphism of $\Bbb P\Bbb C^2$, J. Mod. Dyn. 6 (2012), no. 3, 327–375. MR 2988812, DOI 10.3934/jmd.2012.6.327
- Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems, Ergodic Theory Dynam. Systems 34 (2014), no. 3, 938–985. MR 3199801, DOI 10.1017/etds.2012.163
- Volodymyr Nekrashevych, An uncountable family of 3-generated groups with isomorphic profinite completions, Internat. J. Algebra Comput. 24 (2014), no. 1, 33–46. MR 3189664, DOI 10.1142/S0218196714500039
Additional Information
- Received by editor(s): March 2, 2016
- Received by editor(s) in revised form: September 15, 2016
- Published electronically: November 22, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Conform. Geom. Dyn. 20 (2016), 303-358
- MSC (2010): Primary 37F15, 37F20
- DOI: https://doi.org/10.1090/ecgd/302
- MathSciNet review: 3574443
Dedicated: In memory of Vitaly Sushchansky