Conformal tilings I: foundations, theory, and practice
HTML articles powered by AMS MathViewer
- by Philip L. Bowers and Kenneth Stephenson
- Conform. Geom. Dyn. 21 (2017), 1-63
- DOI: https://doi.org/10.1090/ecgd/304
- Published electronically: January 10, 2017
- PDF | Request permission
Abstract:
This paper opens a new chapter in the study of planar tilings by introducing conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Omer Angel and Oded Schramm, Uniform infinite planar triangulations, Comm. Math. Phys. 241 (2003), no. 2-3, 191–213. MR 2013797, DOI 10.1007/978-1-4419-9675-6_{1}6
- Michael Baake and Uwe Grimm, Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 149, Cambridge University Press, Cambridge, 2013. A mathematical invitation; With a foreword by Roger Penrose. MR 3136260, DOI 10.1017/CBO9781139025256
- Mario Bonk, Uniformization of Sierpiński carpets in the plane, Invent. Math. 186 (2011), no. 3, 559–665. MR 2854086, DOI 10.1007/s00222-011-0325-8
- Philip L. Bowers and Kenneth Stephenson, Conformal tilings II: Local isomorphism, hierarchy, and conformal type.
- Philip L. Bowers and Kenneth Stephenson, The set of circle packing points in the Teichmüller space of a surface of finite conformal type is dense, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 487–513. MR 1151326, DOI 10.1017/S0305004100075575
- Philip L. Bowers and Kenneth Stephenson, Circle packings in surfaces of finite type: an in situ approach with applications to moduli, Topology 32 (1993), no. 1, 157–183. MR 1204413, DOI 10.1016/0040-9383(93)90044-V
- Philip L. Bowers and Kenneth Stephenson, A “regular” pentagonal tiling of the plane, Conform. Geom. Dyn. 1 (1997), 58–68. MR 1479069, DOI 10.1090/S1088-4173-97-00014-3
- Philip L. Bowers and Kenneth Stephenson, Uniformizing dessins and Belyĭ maps via circle packing, Mem. Amer. Math. Soc. 170 (2004), no. 805, xii+97. MR 2053391, DOI 10.1090/memo/0805
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI 10.1007/BF02398434
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. I, Conform. Geom. Dyn. 10 (2006), 63–99. MR 2218641, DOI 10.1090/S1088-4173-06-00126-3
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. II, Conform. Geom. Dyn. 10 (2006), 326–354. MR 2268483, DOI 10.1090/S1088-4173-06-00127-5
- Natalie Frank, Fusion: a general framework for hierarchical tilings.
- Natalie Priebe Frank, A primer of substitution tilings of the Euclidean plane, Expo. Math. 26 (2008), no. 4, 295–326. MR 2462439, DOI 10.1016/j.exmath.2008.02.001
- James T. Gill and Steffen Rohde, On the Riemann surface type of random planar maps, Rev. Mat. Iberoam. 29 (2013), no. 3, 1071–1090. MR 3090146, DOI 10.4171/RMI/749
- A. Grothendieck, Esquisse d’un programme, (1985), Preprint: introduced Dessins.
- Ori Gurel-Gurevich and Asaf Nachmias, Recurrence of planar graph limits, Ann. of Math. (2) 177 (2013), no. 2, 761–781. MR 3010812, DOI 10.4007/annals.2013.177.2.10
- Zheng-Xu He and Oded Schramm, The inverse Riemann mapping theorem for relative circle domains, Pacific J. Math. 171 (1995), no. 1, 157–165. MR 1362982, DOI 10.2140/pjm.1995.171.157
- Gareth A. Jones and David Singerman, Complex functions, Cambridge University Press, Cambridge, 1987. An algebraic and geometric viewpoint. MR 890746, DOI 10.1017/CBO9781139171915
- Richard Kenyon and Andrei Okounkov, What is $\dots$ a dimer?, Notices Amer. Math. Soc. 52 (2005), no. 3, 342–343. MR 2125269
- Richard Kenyon and Andrei Okounkov, Limit shapes and the complex Burgers equation, Acta Math. 199 (2007), no. 2, 263–302. MR 2358053, DOI 10.1007/s11511-007-0021-0
- Grégory Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math. 210 (2013), no. 2, 319–401. MR 3070569, DOI 10.1007/s11511-013-0096-8
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- M. C. Esher, The magic of M. C. Esher, Thames and Hudson, 2013, ISBN-13: 9780500290736.
- Dane Mayhook, Conformal tilings and type, Ph.D. thesis, 2016; advisor Phil Bowers, FSU.
- Hervé Oyono-Oyono and Samuel Petite, $C^*$-algebras of Penrose hyperbolic tilings, J. Geom. Phys. 61 (2011), no. 2, 400–424. MR 2746126, DOI 10.1016/j.geomphys.2010.09.019
- R. Penrose, Pentaplexity: a class of nonperiodic tilings of the plane, Math. Intelligencer 2 (1979/80), no. 1, 32–37. MR 558670, DOI 10.1007/BF03024384
- Charles Radin, The pinwheel tilings of the plane, Ann. of Math. (2) 139 (1994), no. 3, 661–702. MR 1283873, DOI 10.2307/2118575
- M. Ramirez-Solano, Cohomology of the continuous hull of a combinatorial pentagonal tiling, ArXiv e-prints (2013).
- —, Construction of the continuous hull for the combinatorics of a regular pentagonal tiling of the plane, ArXiv e-prints (2013).
- —, Construction of the discrete hull for the combinatorics of a regular pentagonal tiling of the plane, ArXiv e-prints (2013).
- —, Continuous hull of a combinatorial pentagonal tiling as an inverse limit, ArXiv e-prints (2013).
- Maria Ramirez-Solano, Non-communtative geometrical aspects and topological invariants of a conformally regular pentagonal tiling of the plane, Ph.D. thesis, Department of Mathematical Sciences, University of Copenhagen, 2013.
- Burt Rodin and Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), no. 2, 349–360. MR 906396
- Leila Schneps, Dessins d’enfants on the Riemann sphere, The Grothendieck theory of dessins d’enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 47–77. MR 1305393
- G. B. Shabat and V. A. Voevodsky, Drawing curves over number fields, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 199–227. MR 1106916, DOI 10.1007/978-0-8176-4576-2_{8}
- Warclaw Sierpinski, Sur une courbe contorienne qui contient une image biunivoque et continue de toute courbe donnée, C. r. hebd. Seanc. Acad. Sci, Paris 162 (1916), 629–632.
- Kenneth Stephenson, Circle packing: a mathematical tale, Notices Amer. Math. Soc. 50 (2003), no. 11, 1376–1388. MR 2011604
- Kenneth Stephenson, Introduction to circle packing, Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions. MR 2131318
- William Thurston, The finite Riemann mapping theorem, 1985, Invited talk, An International Symposium at Purdue University in celebration of de Branges’ proof of the Bieberbach conjecture, March 1985.
- W. T. Tutte, Convex representations of graphs, Proc. London Math. Soc. (3) 10 (1960), 304–320. MR 114774, DOI 10.1112/plms/s3-10.1.304
- William E. Wood, Bounded outdegree and extremal length on discrete Riemann surfaces, Conform. Geom. Dyn. 14 (2010), 194–201. MR 2672225, DOI 10.1090/S1088-4173-2010-00210-9
Bibliographic Information
- Philip L. Bowers
- Affiliation: Department of Mathematics, The Florida State University, Tallahassee, Florida 32306
- MR Author ID: 40455
- Email: bowers@math.fsu.edu
- Kenneth Stephenson
- Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996
- MR Author ID: 216579
- Email: kstephe2@utk.edu
- Received by editor(s): November 20, 2014
- Received by editor(s) in revised form: August 26, 2015
- Published electronically: January 10, 2017
- Additional Notes: The second author gratefully acknowledges support of a Simons Foundation Collaboration Grant
- © Copyright 2017 American Mathematical Society
- Journal: Conform. Geom. Dyn. 21 (2017), 1-63
- MSC (2010): Primary 52C23, 52C26; Secondary 52C45, 68U05
- DOI: https://doi.org/10.1090/ecgd/304
- MathSciNet review: 3594281