## Iterated function system quasiarcs

HTML articles powered by AMS MathViewer

- by Annina Iseli and Kevin Wildrick PDF
- Conform. Geom. Dyn.
**21**(2017), 78-100 Request permission

## Abstract:

We consider a class of iterated function systems (IFSs) of contracting similarities of $\mathbb {R}^n$, introduced by Hutchinson, for which the invariant set possesses a natural Hölder continuous parameterization by the unit interval. When such an invariant set is homeomorphic to an interval, we give necessary conditions in terms of the similarities alone for it to possess a quasisymmetric (and as a corollary, bi-Hölder) parameterization. We also give a related necessary condition for the invariant set of such an IFS to be homeomorphic to an interval.## References

- V. V. Aseev, A. V. Tetenov, and A. S. Kravchenko,
*Self-similar Jordan curves on the plane*, Sibirsk. Mat. Zh.**44**(2003), no. 3, 481–492 (Russian, with Russian summary); English transl., Siberian Math. J.**44**(2003), no. 3, 379–386. MR**1984698**, DOI 10.1023/A:1023848327898 - Kari Astala,
*Personal communication*. - Kari Astala,
*Self-similar zippers*, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 61–73. MR**955808**, DOI 10.1007/978-1-4613-9602-4_{4} - Mario Bonk,
*Quasiconformal geometry of fractals*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1349–1373. MR**2275649** - Mario Bonk and Bruce Kleiner,
*Quasisymmetric parametrizations of two-dimensional metric spheres*, Invent. Math.**150**(2002), no. 1, 127–183. MR**1930885**, DOI 10.1007/s00222-002-0233-z - Mario Bonk and Daniel Meyer,
*Expanding thurston maps*, (preprint: arXiv:1009.3647). - Marc Bourdon and Bruce Kleiner,
*Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups*, Groups Geom. Dyn.**7**(2013), no. 1, 39–107. MR**3019076**, DOI 10.4171/GGD/177 - Matias Carrasco Piaggio,
*On the conformal gauge of a compact metric space*, Ann. Sci. Éc. Norm. Supér. (4)**46**(2013), no. 3, 495–548 (2013) (English, with English and French summaries). MR**3099984**, DOI 10.24033/asens.2195 - Guy David and Stephen Semmes,
*Fractured fractals and broken dreams*, Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure. MR**1616732** - K. J. Falconer,
*Dimensions and measures of quasi self-similar sets*, Proc. Amer. Math. Soc.**106**(1989), no. 2, 543–554. MR**969315**, DOI 10.1090/S0002-9939-1989-0969315-8 - K. J. Falconer and D. T. Marsh,
*Classification of quasi-circles by Hausdorff dimension*, Nonlinearity**2**(1989), no. 3, 489–493. MR**1005062**, DOI 10.1088/0951-7715/2/3/008 - K. J. Falconer and D. T. Marsh,
*On the Lipschitz equivalence of Cantor sets*, Mathematika**39**(1992), no. 2, 223–233. MR**1203278**, DOI 10.1112/S0025579300014959 - Frederick W. Gehring and Kari Hag,
*The ubiquitous quasidisk*, Mathematical Surveys and Monographs, vol. 184, American Mathematical Society, Providence, RI, 2012. With contributions by Ole Jacob Broch. MR**2933660**, DOI 10.1090/surv/184 - Manouchehr Ghamsari and David A. Herron,
*Higher dimensional Ahlfors regular sets and chordarc curves in $\mathbf R^n$*, Rocky Mountain J. Math.**28**(1998), no. 1, 191–222. MR**1639853**, DOI 10.1216/rmjm/1181071829 - Masayoshi Hata,
*On the structure of self-similar sets*, Japan J. Appl. Math.**2**(1985), no. 2, 381–414. MR**839336**, DOI 10.1007/BF03167083 - Juha Heinonen,
*Lectures on analysis on metric spaces*, Universitext, Springer-Verlag, New York, 2001. MR**1800917**, DOI 10.1007/978-1-4613-0131-8 - David Herron and Daniel Meyer,
*Quasicircles and bounded turning circles modulo bi-Lipschitz maps*, Rev. Mat. Iberoam.**28**(2012), no. 3, 603–630. MR**2949615**, DOI 10.4171/RMI/687 - John E. Hutchinson,
*Fractals and self-similarity*, Indiana Univ. Math. J.**30**(1981), no. 5, 713–747. MR**625600**, DOI 10.1512/iumj.1981.30.30055 - Marta Llorente and Pertti Mattila,
*Lipschitz equivalence of subsets of self-conformal sets*, Nonlinearity**23**(2010), no. 4, 875–882. MR**2602018**, DOI 10.1088/0951-7715/23/4/006 - John McLaughlin,
*A note on Hausdorff measures of quasi-self-similar sets*, Proc. Amer. Math. Soc.**100**(1987), no. 1, 183–186. MR**883425**, DOI 10.1090/S0002-9939-1987-0883425-3 - Daniel Meyer,
*Snowballs are quasiballs*, Trans. Amer. Math. Soc.**362**(2010), no. 3, 1247–1300. MR**2563729**, DOI 10.1090/S0002-9947-09-04635-2 - Istvan Prause,
*Holomorphic motions: http://www.math.helsinki.fi/${\sim }$prause/qc.html*. - Hui Rao, Huo-Jun Ruan, and Yang Wang,
*Lipschitz equivalence of self-similar sets: algebraic and geometric properties*, Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics, Contemp. Math., vol. 600, Amer. Math. Soc., Providence, RI, 2013, pp. 349–364. MR**3203409**, DOI 10.1090/conm/600/11963 - Steffen Rohde,
*Quasicircles modulo bilipschitz maps*, Rev. Mat. Iberoamericana**17**(2001), no. 3, 643–659. MR**1900898**, DOI 10.4171/RMI/307 - P. Tukia and J. Väisälä,
*Quasisymmetric embeddings of metric spaces*, Ann. Acad. Sci. Fenn. Ser. A I Math.**5**(1980), no. 1, 97–114. MR**595180**, DOI 10.5186/aasfm.1980.0531 - Zhi-Ying Wen and Li-Feng Xi,
*Relations among Whitney sets, self-similar arcs and quasi-arcs*, Israel J. Math.**136**(2003), 251–267. MR**1998112**, DOI 10.1007/BF02807200 - Li-Feng Xi,
*Lipschitz equivalence of self-conformal sets*, J. London Math. Soc. (2)**70**(2004), no. 2, 369–382. MR**2078899**, DOI 10.1112/S0024610704005630

## Additional Information

**Annina Iseli**- Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Email: annina.iseli@math.unibe.ch
**Kevin Wildrick**- Affiliation: Department of Mathematical Sciences, Montana State University, P.O. Box 172400 Bozeman, Montana 59717
- MR Author ID: 843465
- Email: kevin.wildrick@montana.edu
- Received by editor(s): November 20, 2015
- Received by editor(s) in revised form: November 25, 2016
- Published electronically: February 3, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**21**(2017), 78-100 - MSC (2010): Primary 28A80, 30C65
- DOI: https://doi.org/10.1090/ecgd/305
- MathSciNet review: 3604862