Dynamics of singular complex analytic vector fields with essential singularities I
HTML articles powered by AMS MathViewer
- by Alvaro Alvarez–Parrilla and Jesús Muciño–Raymundo PDF
- Conform. Geom. Dyn. 21 (2017), 126-224 Request permission
Abstract:
We tackle the problem of understanding the geometry and dynamics of singular complex analytic vector fields $X$ with essential singularities on a Riemann surface $M$ (compact or not). Two basic techniques are used. (a) In the complex analytic category on $M$, we exploit the correspondence between singular vector fields $X$, differential forms $\omega _{X}$ (with $\omega _{X}(X)\equiv 1$), orientable quadratic differentials $\omega _{X} \otimes \omega _{X}$, global distinguished parameters $\Psi _{X} (z) = \int ^z \omega _{X}$, and the Riemann surfaces $\mathcal {R}_{X}$ of the above parameters. (b) We use the fact that all singular complex analytic vector fields can be expressed as the global pullback via certain maps of the holomorphic vector fields on the Riemann sphere, in particular, via their respective $\Psi _{X}$.
We show that under certain analytical conditions on $\Psi _{X}$, the germ of a singular complex analytic vector field determines a decomposition in angular sectors; center $C$, hyperbolic $H$, elliptic $E$, parabolic $P$ sectors but with the addition of suitable copies of a new type of entire angular sector $\mathscr {E}$, stemming from $X(z)=\mathrm{e}^z \frac {\partial }{\partial z}$. This extends the classical theorems of A. A. Andronov et al. on the decomposition in angular sectors of real analytic vector field germs.
The Poincaré–Hopf index theory for $\mathfrak {Re}\left (X\right )$ local and global on compact Riemann surfaces, is extended so as to include the case of suitable isolated essential singularities.
The inverse problem: determining which cyclic words $\mathcal {W}_{X}$, comprised of hyperbolic, elliptic, parabolic and entire angular sectors, it is possible to obtain from germs of singular analytic vector fields, is also answered in terms of local analytical invariants.
We also study the problem of when and how a germ of a singular complex analytic vector field having an essential singularity (not necessarily isolated) can be extended to a suitable compact Riemann surface.
Considering the family of entire vector fields $\mathcal {E}(d) =\{X(z)= \lambda \mathrm{e}^{P(z)}\frac {\partial }{\partial z}\}$ on the Riemann sphere, where $P(z)$ is a polynomial of degree $d$ and $\lambda \in \mathbb {C}^*$, we completely characterize the local and global dynamics of this class of vector fields, compute analytic normal forms for $d=1, 2, 3$, and show that for $d\geq 3$ there are an infinite number of topological (phase portrait) classes of $\mathfrak {Re}(X)$, for $X\in \mathcal {E}(d)$. These results are based on the work of R. Nevanlinna, A. Speisser and M. Taniguchi on entire functions $\Psi _{X}$.
Finally, on the topological decomposition of real vector fields into canonical regions, we extend the results of L. Markus and H. E. Benzinger to meromorphic on $\mathbb {C}$ vector fields $X$, with an essential singularity at $\infty \in \widehat {\mathbb {C}}$, whose $\Psi _{X}^{-1}$ have $d$ logarithmic branch points over $d$ finite asymptotic values and $d$ logarithmic branch points over $\infty$.
References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- A. Alvarez–Parrilla, Complex analytic vector field visualization without numerical integration, Preprint (2009).
- Alvaro Alvarez-Parrilla, Adrian Gómez-Arciga, and Alberto Riesgo-Tirado, Newton vector fields on the plane and on the torus, Complex Var. Elliptic Equ. 54 (2009), no. 5, 449–461. MR 2524140, DOI 10.1080/17476930902755658
- Alvaro Alvarez-Parrilla, Martín Eduardo Frías-Armenta, Elifalet López-González, and Carlos Yee-Romero, On solving systems of autonomous ordinary differential equations by reduction to a variable of an algebra, Int. J. Math. Math. Sci. , posted on (2012), Art. ID 753916, 21. MR 2974702, DOI 10.1155/2012/753916
- A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maĭer, Qualitative theory of second-order dynamic systems, Halsted Press [John Wiley & Sons], New York-Toronto; Israel Program for Scientific Translations, Jerusalem-London, 1973. Translated from the Russian by D. Louvish. MR 0350126
- Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
- L. Arnold, C. Jones, K. Mischaikow, and G. Raugel, Dynamical systems, Lecture Notes in Mathematics, vol. 1609, Springer-Verlag, Berlin, 1995. Lectures given at the Second C.I.M.E. Session held in Montecatini Terme, June 13–22, 1994; Edited by R. Johnson. MR 1374106, DOI 10.1007/BFb0095237
- G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267–276, 479 (Russian). MR 534593
- Harold E. Benzinger, Plane autonomous systems with rational vector fields, Trans. Amer. Math. Soc. 326 (1991), no. 2, 465–483. MR 992604, DOI 10.1090/S0002-9947-1991-0992604-1
- Carlos A. Berenstein and Roger Gay, Complex variables, Graduate Texts in Mathematics, vol. 125, Springer-Verlag, New York, 1991. An introduction. MR 1107514, DOI 10.1007/978-1-4612-3024-3
- Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373. MR 1344897, DOI 10.4171/RMI/176
- Bodil Branner and Kealey Dias, Classification of complex polynomial vector fields in one complex variable, J. Difference Equ. Appl. 16 (2010), no. 5-6, 463–517. MR 2642463, DOI 10.1080/10236190903251746
- Louis Brickman and E. S. Thomas, Conformal equivalence of analytic flows, J. Differential Equations 25 (1977), no. 3, 310–324. MR 447674, DOI 10.1016/0022-0396(77)90047-X
- Joshua P. Bowman and Ferrán Valdez, Wild singularities of flat surfaces, Israel J. Math. 197 (2013), no. 1, 69–97. MR 3096607, DOI 10.1007/s11856-013-0022-y
- Xavier Buff and Lei Tan, Dynamical convergence and polynomial vector fields, J. Differential Geom. 77 (2007), no. 1, 1–41. MR 2344353
- Alvaro Bustinduy, Luis Giraldo, and Jesús Muciño-Raymundo, Jacobian mates for non-singular polynomial maps in $\Bbb C^n$ with one-dimensional fibers, J. Singul. 9 (2014), 27–42. MR 3249045, DOI 10.5427/jsing.2014.9b
- Alvaro Bustinduy, Luis Giraldo, and Jesús Muciño-Raymundo, Vector fields from locally invertible polynomial maps in $\Bbb C^n$, Colloq. Math. 140 (2015), no. 2, 205–220. MR 3371776, DOI 10.4064/cm140-2-4
- A. Douady, F. Estrada, P. Sentenac, Champs de vecteurs polynomiaux sur $\mathbb {C}$, Preprint 2005.
- J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431, DOI 10.1007/978-3-642-56936-4
- Freddy Dumortier, Jaume Llibre, and Joan C. Artés, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, Berlin, 2006. MR 2256001
- G. Elfving, Über eine Klasse von Riemannschen Flächen und ihre Uniformisierung, Acta Soc. Sci. Fennicae, N.S. 2, Nr. 3 (1934), 1–60.
- Martín-Eduardo Frías-Armenta and Jesús Muciño-Raymundo, Topological and analytical classification of vector fields with only isochronous centres, J. Difference Equ. Appl. 19 (2013), no. 10, 1694–1728. MR 3173513, DOI 10.1080/10236198.2013.772598
- Antonio Garijo, Armengol Gasull, and Xavier Jarque, Normal forms for singularities of one dimensional holomorphic vector fields, Electron. J. Differential Equations (2004), No. 122, 7. MR 2108893
- Antonio Garijo, Armengol Gasull, and Xavier Jarque, Local and global phase portrait of equation $\dot z=f(z)$, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 309–329. MR 2257435, DOI 10.3934/dcds.2007.17.309
- J. Gregor, Dynamické systémy s regulární pravou stranou I, Pokroky Mat. Fyz. Astron. 3 (1958), 153-160.
- J. Gregor, Dynamické systémy s regulární pravou stranou II, Pokroky Mat. Fyz. Astron. 3 (1958), 266-270.
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Wilhelm Groß, Über die Singularitäten analytischer Funktionen, Monatsh. Math. Phys. 29 (1918), no. 1, 3–47 (German). MR 1548975, DOI 10.1007/BF01700480
- Carlos Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 17–44. MR 837974, DOI 10.1017/S0143385700003278
- Otomar Hájek, Notes on meromorphic dynamical systems. I, Czechoslovak Math. J. 16(91) (1966), 14–27 (English, with Russian summary). MR 194661
- Otomar Hájek, Notes on meromorphic dynamical systems. II, Czechoslovak MAth. J. 16 (91) (1966), 28–35 (English, with Russian summary). MR 0194662
- Otomar Hájek, Notes on meromorphic dynamical systems. III, Czechoslovak Math. J. 16(91) (1966), 36–40 (English, with Russian summary). MR 194663
- Kevin Hockett and Sita Ramamurti, Dynamics near the essential singularity of a class of entire vector fields, Trans. Amer. Math. Soc. 345 (1994), no. 2, 693–703. MR 1270665, DOI 10.1090/S0002-9947-1994-1270665-5
- Xin-Hou Hua and Chung-Chun Yang, Dynamics of transcendental functions, Asian Mathematics Series, vol. 1, Gordon and Breach Science Publishers, Amsterdam, 1998. MR 1652248
- A. Hurwitz, Sur les points critiques des fonctions inverses, Comptes Rendus 143 (1906), 877-879; Math. Werke, Bd. 1, S. 655-656.
- Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, Graduate Studies in Mathematics, vol. 86, American Mathematical Society, Providence, RI, 2008. MR 2363178, DOI 10.1090/gsm/086
- F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helsingfors, 1914.
- James A. Jenkins, Univalent functions and conformal mapping, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0096806
- H. Th. Jongen, P. Jonker, and F. Twilt, On the classification of plane graphs representing structurally stable rational Newton flows, J. Combin. Theory Ser. B 51 (1991), no. 2, 256–270. MR 1099075, DOI 10.1016/0095-8956(91)90041-H
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 0355886
- S. Kobayashi, K. Nomizu, Foundations of Differential Geometry Vol. 2., John Wiley & Sons, New York, 1969.
- F. Klein, On Riemann’s Theory of Algebraic Functions and Their Integrals, Dover Publications Inc., New York, 1963.
- Maxim Kontsevich and Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003), no. 3, 631–678. MR 2000471, DOI 10.1007/s00222-003-0303-x
- Jesús Muciño-Raymundo, Complex structures adapted to smooth vector fields, Math. Ann. 322 (2002), no. 2, 229–265. MR 1893915, DOI 10.1007/s002080100206
- N. A. Lukashevich, Isochronicity of a center for certain systems of differential equations, Differ. Uravn. 1 (1965), 295–302.
- L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76 (1954), 127–148. MR 60657, DOI 10.1090/S0002-9947-1954-0060657-0
- Howard Masur and Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. MR 1928530, DOI 10.1016/S1874-575X(02)80015-7
- Jesús Muciño-Raymundo, Complex structures adapted to smooth vector fields, Math. Ann. 322 (2002), no. 2, 229–265. MR 1893915, DOI 10.1007/s002080100206
- Jesús Muciño-Raymundo and Carlos Valero-Valdés, Bifurcations of meromorphic vector fields on the Riemann sphere, Ergodic Theory Dynam. Systems 15 (1995), no. 6, 1211–1222. MR 1366317, DOI 10.1017/S0143385700009883
- David Mumford, Curves and their Jacobians, University of Michigan Press, Ann Arbor, Mich., 1975. MR 0419430
- D. J. Needham and A. C. King, On meromorphic complex differential equations, Dynam. Stability Systems 9 (1994), no. 2, 99–122. MR 1287510, DOI 10.1080/02681119408806171
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280
- Rolf Nevanlinna, Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math. 58 (1932), no. 1, 295–373 (German). MR 1555350, DOI 10.1007/BF02547780
- Dean A. Neumann, Classification of continuous flows on $2$-manifolds, Proc. Amer. Math. Soc. 48 (1975), 73–81. MR 356138, DOI 10.1090/S0002-9939-1975-0356138-6
- Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR 1429619
- Ronen Peretz, Maximal domains for entire functions, J. Anal. Math. 61 (1993), 1–28. MR 1253436, DOI 10.1007/BF02788836
- Bernhard Riemann, Collected papers, Kendrick Press, Heber City, UT, 2004. Translated from the 1892 German edition by Roger Baker, Charles Christenson and Henry Orde. MR 2121437
- M. Sabatini, Characterizing isochronous centres by Lie brackets, Differential Equations Dynam. Systems 5 (1997), no. 1, 91–99. MR 1656001
- Sanford L. Segal, Nine introductions in complex analysis, Revised edition, North-Holland Mathematics Studies, vol. 208, Elsevier Science B.V., Amsterdam, 2008. MR 2376066
- Michael Shub, David Tischler, and Robert F. Williams, The Newtonian graph of a complex polynomial, SIAM J. Math. Anal. 19 (1988), no. 1, 246–256. MR 924558, DOI 10.1137/0519018
- Steve Smale, A convergent process of price adjustment and global Newton methods, J. Math. Econom. 3 (1976), no. 2, 107–120. MR 411577, DOI 10.1016/0304-4068(76)90019-7
- Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1–36. MR 590817, DOI 10.1090/S0273-0979-1981-14858-8
- A. Speiser, Untersuchungen über konforme und quasikonforme Abbildung, Dtsch. Math. 3 (1938).
- A. Speiser, Ueber Riemannsche Flächen, Comment. Math. Helv. 2 (1930), no. 1, 284–293 (German). MR 1509419, DOI 10.1007/BF01214465
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- Masahiko Taniguchi, Explicit representation of structurally finite entire functions, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 4, 68–70. MR 1829377
- Masahiko Taniguchi, Synthetic deformation space of an entire function, Value distribution theory and complex dynamics (Hong Kong, 2000) Contemp. Math., vol. 303, Amer. Math. Soc., Providence, RI, 2002, pp. 107–136. MR 1943529, DOI 10.1090/conm/303/05238
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
- E. P. Volokitin and V. V. Ivanov, Isochronicity and commutability of polynomial vector fields, Sibirsk. Mat. Zh. 40 (1999), no. 1, 30–48, i (Russian, with Russian summary); English transl., Siberian Math. J. 40 (1999), no. 1, 23–38. MR 1686982, DOI 10.1007/BF02674287
- Hung Hsi Wu, Function theory on noncompact Kähler manifolds, Complex differential geometry, DMV Sem., vol. 3, Birkhäuser, Basel, 1983, pp. 67–155. MR 826253, DOI 10.1007/978-3-0348-6566-1_{2}
Additional Information
- Alvaro Alvarez–Parrilla
- Affiliation: Grupo Alximia SA de CV, Ensenada, Baja California, México
- Email: alvaro.uabc@gmail.com
- Jesús Muciño–Raymundo
- Affiliation: Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México
- Email: muciray@matmor.unam.mx
- Received by editor(s): February 20, 2014
- Received by editor(s) in revised form: July 8, 2016, July 29, 2016, and December 14, 2016
- Published electronically: March 16, 2017
- Additional Notes: The first author was partially supported by UABC projects 1273 and 0196
The second author was partially supported by LAISLA - © Copyright 2017 American Mathematical Society
- Journal: Conform. Geom. Dyn. 21 (2017), 126-224
- MSC (2010): Primary 32S65; Secondary 30F20, 58K45, 32M25
- DOI: https://doi.org/10.1090/ecgd/306
- MathSciNet review: 3623567
Dedicated: Dedicated to Luz Ximena; she loves the pictures.