Complex perspective for the projective heat map acting on pentagons
HTML articles powered by AMS MathViewer
- by Scott R. Kaschner and Roland K. W. Roeder PDF
- Conform. Geom. Dyn. 21 (2017), 247-263 Request permission
Abstract:
We place Schwartz’s work on the real dynamics of the projective heat map $H$ into the complex perspective by computing its first dynamical degree and gleaning some corollaries about the dynamics of $H$.References
- Wikipedia page on del pezzo surfaces https://en.wikipedia.org/wiki/Del_Pezzo_surface.
- Eric Bedford, The dynamical degrees of a mapping, Proceedings of the Workshop Future Directions in Difference Equations, Colecc. Congr., vol. 69, Univ. Vigo, Serv. Publ., Vigo, 2011, pp. 3–13. MR 2905566
- Jean-Yves Briend and Julien Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de $\mathbf C\textrm {P}^k$, Acta Math. 182 (1999), no. 2, 143–157 (French). MR 1710180, DOI 10.1007/BF02392572
- Jean-Yves Briend and Julien Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $\mbox {P}^k (\mathbb {C})$, Publications Mathématiques de l’IHÉS 93 (2001), 145–159.
- J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169. MR 1867314, DOI 10.1353/ajm.2001.0038
- Jeffrey Diller, Romain Dujardin, and Vincent Guedj, Dynamics of meromorphic maps with small topological degree I: from cohomology to currents, Indiana Univ. Math. J. 59 (2010), no. 2, 521–561. MR 2648077, DOI 10.1512/iumj.2010.59.4023
- Tien-Cuong Dinh and Viêt-Anh Nguyên, Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv. 86 (2011), no. 4, 817–840. MR 2851870, DOI 10.4171/CMH/241
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, On the dynamical degrees of meromorphic maps preserving a fibration, Commun. Contemp. Math. 14 (2012), no. 6, 1250042, 18. MR 2989646, DOI 10.1142/S0219199712500423
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, Equidistribution for meromorphic maps with dominant topological degree, Indiana Univ. Math. J. 64 (2015), no. 6, 1805–1828. MR 3436236, DOI 10.1512/iumj.2015.64.5674
- Tien-Cuong Dinh and Nessim Sibony, Regularization of currents and entropy, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 959–971 (English, with English and French summaries). MR 2119243, DOI 10.1016/j.ansens.2004.09.002
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Annals of mathematics (2005), 1637–1644.
- Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012. A modern view. MR 2964027, DOI 10.1017/CBO9781139084437
- Shmuel Friedland, Entropy of polynomial and rational maps, Ann. of Math. (2) 133 (1991), no. 2, 359–368. MR 1097242, DOI 10.2307/2944341
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Vincent Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161 (2005), no. 3, 1589–1607. MR 2179389, DOI 10.4007/annals.2005.161.1589
- Shu Kawaguchi, Introduction to algebraic and arithmetic dynamics—a survey, Algebraic number theory and related topics 2009, RIMS Kôkyûroku Bessatsu, B25, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 103–123. MR 2868573
- Roland K. W. Roeder, The action on cohomology by compositions of rational maps, Math. Res. Lett. 22 (2015), no. 2, 605–632. MR 3342248, DOI 10.4310/MRL.2015.v22.n2.a13
- Alexander Russakovskii and Bernard Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897–932. MR 1488341, DOI 10.1512/iumj.1997.46.1441
- Rich E. Schwartz, The projective heat map, AMS Mathematical Surveys and Monographs, Vol. 219, American Mathematical Society, Providence, 2017. ISBN: 978-1-4704-3514-1.
- Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833
- Shou-Wu Zhang, Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 381–430. MR 2408228, DOI 10.4310/SDG.2005.v10.n1.a9
Additional Information
- Scott R. Kaschner
- Affiliation: Department of Mathematics & Actuarial Science, Butler University, Jordan Hall, Room 270, 4600 Sunset Avenue, Indianapolis, Indiana 46208
- MR Author ID: 1091957
- Email: skaschne@butler.edu
- Roland K. W. Roeder
- Affiliation: Department of Mathematical Sciences, IUPUI, LD Building, Room 224Q, 402 North Blackford Street, Indianapolis, Indiana 46202-3267
- MR Author ID: 718580
- Email: rroeder@math.iupui.edu
- Received by editor(s): October 6, 2016
- Received by editor(s) in revised form: March 3, 2017
- Published electronically: May 3, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Conform. Geom. Dyn. 21 (2017), 247-263
- MSC (2010): Primary 37F99; Secondary 32H50
- DOI: https://doi.org/10.1090/ecgd/310
- MathSciNet review: 3645773