Metrics $\rho$, quasimetrics $\rho ^s$ and pseudometrics $\inf \rho ^s$
HTML articles powered by AMS MathViewer
- by K. V. Storozhuk PDF
- Conform. Geom. Dyn. 21 (2017), 264-272 Request permission
Abstract:
Let $\rho$ be a metric on a space $X$ and let $s\geq 1$. The function $\rho ^s(a,b)=\rho (a,b)^s$ is a quasimetric (it need not satisfy the triangle inequality). The function $\inf \rho ^s(a,b)$ defined by the condition $\inf \rho ^s(a,b)=\inf \{\sum _0^n \rho ^s(z_i,z_{i+1})$ $z_0=a, z_n=b\}$ is a pseudometric (i.e., satisfies the triangle inequality but can be degenerate). We show how this degeneracy can be connected with the Hausdorff dimension of the space $(X,\rho )$. We also give some examples showing how the topology of the space $(X,\inf \rho ^s)$ can change as $s$ changes.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Ryan Alvarado and Marius Mitrea, Hardy spaces on Ahlfors-regular quasi metric spaces, Lecture Notes in Mathematics, vol. 2142, Springer, Cham, 2015. A sharp theory. MR 3310009, DOI 10.1007/978-3-319-18132-5
- A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, and K. V. Storozhuk, Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics, Topology Appl. 221 (2017), 178–194. MR 3624455, DOI 10.1016/j.topol.2017.02.035
- Garrett Birkhoff, A note on topological groups, Compositio Math. 3 (1936), 427–430. MR 1556955
- Mario Bonk and Thomas Foertsch, Asymptotic upper curvature bounds in coarse geometry, Math. Z. 253 (2006), no. 4, 753–785. MR 2221098, DOI 10.1007/s00209-005-0931-5
- Sergei Buyalo and Viktor Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. MR 2327160, DOI 10.4171/036
- E. W. Chittenden, On the equivalence of Écart and voisinage, Trans. Amer. Math. Soc. 18 (1917), no. 2, 161–166. MR 1501066, DOI 10.1090/S0002-9947-1917-1501066-1
- Ryszard Engelking, General topology, Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60], PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author. MR 0500780
- A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), no. 2, 133–142. MR 1563501, DOI 10.1090/S0002-9904-1937-06509-8
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- S. P. Ponomarëv, On the Hausdorff dimension of quasiconformal curves, Sibirsk. Mat. Zh. 34 (1993), no. 4, 142–148, iv, ix (Russian, with English and Russian summaries); English transl., Siberian Math. J. 34 (1993), no. 4, 717–722. MR 1248798, DOI 10.1007/BF00975174
- Seppo Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I No. 395 (1966), 30. MR 0210889
- Viktor Schroeder, Quasi-metric and metric spaces, Conform. Geom. Dyn. 10 (2006), 355–360. MR 2268484, DOI 10.1090/S1088-4173-06-00155-X
- Nguyen Van Dung and Tran Van An, Remarks on Frink’s metrization technique and applications, arXiv:1507.01724.
Additional Information
- K. V. Storozhuk
- Affiliation: Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russia – and – Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090, Russia – and – RUDN University, 6 Miklukho-Makiaya st, Moscow, Russia, 117198
- MR Author ID: 637759
- Email: stork@math.nsc.ru
- Received by editor(s): October 12, 2016
- Received by editor(s) in revised form: April 17, 2017, May 7, 2017, and May 8, 2017
- Published electronically: July 7, 2017
- Additional Notes: This publication was supported by the Ministry of Education and Science of the Russian Federation (Agreement number 02.a03.21.0008).
- © Copyright 2017 American Mathematical Society
- Journal: Conform. Geom. Dyn. 21 (2017), 264-272
- MSC (2010): Primary 54E35; Secondary 28A78, 30C62
- DOI: https://doi.org/10.1090/ecgd/311
- MathSciNet review: 3668988