A compactification of the moduli space of self-maps of $\mathbb {CP}^1$ via stable maps
HTML articles powered by AMS MathViewer
- by Johannes Schmitt
- Conform. Geom. Dyn. 21 (2017), 273-318
- DOI: https://doi.org/10.1090/ecgd/313
- Published electronically: October 12, 2017
- PDF | Request permission
Abstract:
We present a new compactification $M(d,n)$ of the moduli space of self-maps of $\mathbb {CP}^1$ of degree $d$ with $n$ markings. It is constructed via GIT from the stable maps moduli space $\overline M_{0,n}(\mathbb {CP}^1 \times \mathbb {CP}^1, (1,d))$. We show that it is the coarse moduli space of a smooth Deligne-Mumford stack and we compute its rational Picard group.References
- Jarod Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349–2402 (English, with English and French summaries). MR 3237451
- K. Behrend, B. Conrad, D. Edidin, B. Fantechi, W. Fulton, L. Göttsche, and A. Kresch, Algebraic stacks. https://www.math.uzh.ch/index.php?pr_vo_det&key1=1287&key2=580.
- K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436, DOI 10.1215/S0012-7094-96-08501-4
- Leticia Brambila-Paz, Oscar García-Prada, Peter Newstead, and Richard P. Thomas (eds.), Moduli spaces, London Mathematical Society Lecture Note Series, vol. 411, Cambridge University Press, Cambridge, 2014. Papers from the programme held in Cambridge, January 4–July 1, 2011. MR 3236896, DOI 10.1017/CBO9781107279544
- Laura DeMarco, The moduli space of quadratic rational maps, J. Amer. Math. Soc. 20 (2007), no. 2, 321–355. MR 2276773, DOI 10.1090/S0894-0347-06-00527-3
- Igor Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note Series, vol. 296, Cambridge University Press, Cambridge, 2003. MR 2004511, DOI 10.1017/CBO9780511615436
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13 (1996), 613–663. MR 1408320, DOI 10.1155/S1073792896000414
- Robert Guralnick, David B. Jaffe, Wayne Raskind, and Roger Wiegand, On the Picard group: torsion and the kernel induced by a faithfully flat map, J. Algebra 183 (1996), no. 2, 420–455. MR 1399035, DOI 10.1006/jabr.1996.0228
- Robin Hartshorne, Deformation theory, Graduate Texts in Mathematics, vol. 257, Springer, New York, 2010. MR 2583634, DOI 10.1007/978-1-4419-1596-2
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- A. Hurwitz, Ueber die Anzahl der Riemann’schen Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 55 (1901), no. 1, 53–66 (German). MR 1511135, DOI 10.1007/BF01448116
- Friedrich Ischebeck, Zur Picard-Gruppe eines Produktes, Math. Z. 139 (1974), 141–157. MR 401758, DOI 10.1007/BF01418311
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.1090/S0002-9947-1992-1034665-0
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
- B. Kim and R. Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces, Symplectic geometry and mirror symmetry (Seoul, 2000) World Sci. Publ., River Edge, NJ, 2001, pp. 187–201. MR 1882330, DOI 10.1142/9789812799821_{0}006
- Alon Levy, The space of morphisms on projective space, Acta Arith. 146 (2011), no. 1, 13–31. MR 2741188, DOI 10.4064/aa146-1-2
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482
- John Milnor, On rational maps with two critical points, Experiment. Math. 9 (2000), no. 4, 481–522. MR 1806289
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- N. Miasnikov, B. Stout, and P. Williams, Automorphism loci for the moduli space of rational maps. ArXiv e-prints, August 2014.
- A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006), no. 2, 517–560. MR 2199225, DOI 10.4007/annals.2006.163.517
- Dragos Oprea, Divisors on the moduli spaces of stable maps to flag varieties and reconstruction, J. Reine Angew. Math. 586 (2005), 169–205. MR 2180604, DOI 10.1515/crll.2005.2005.586.169
- Rahul Pandharipande, Intersections of $\mathbf Q$-divisors on Kontsevich’s moduli space $\overline M_{0,n}(\mathbf P^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1481–1505. MR 1407707, DOI 10.1090/S0002-9947-99-01909-1
- Matthieu Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005), no. 1, 209–236. MR 2125542, DOI 10.1307/mmj/1114021093
- Johannes Schmitt, Iteration maps and intersection theory on moduli spaces of stable self-maps. forthcoming.
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. MR 2017446
- Joseph H. Silverman, The space of rational maps on $\mathbf P^1$, Duke Math. J. 94 (1998), no. 1, 41–77. MR 1635900, DOI 10.1215/S0012-7094-98-09404-2
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2014.
- Ravi Vakil, The characteristic numbers of quartic plane curves, Canad. J. Math. 51 (1999), no. 5, 1089–1120. MR 1718648, DOI 10.4153/CJM-1999-048-1
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
Bibliographic Information
- Johannes Schmitt
- Affiliation: Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
- MR Author ID: 1074251
- Email: johannes.schmitt@math.ethz.ch
- Received by editor(s): November 30, 2016
- Received by editor(s) in revised form: July 25, 2017
- Published electronically: October 12, 2017
- Additional Notes: The author was supported by grant SNF-200020162928
- © Copyright 2017 American Mathematical Society
- Journal: Conform. Geom. Dyn. 21 (2017), 273-318
- MSC (2010): Primary 37F10, 14D23, 14L30
- DOI: https://doi.org/10.1090/ecgd/313
- MathSciNet review: 3711376