Degree growth of rational maps induced from algebraic structures
HTML articles powered by AMS MathViewer
- by Charles Favre and Jan-Li Lin
- Conform. Geom. Dyn. 21 (2017), 353-368
- DOI: https://doi.org/10.1090/ecgd/312
- Published electronically: October 25, 2017
- PDF | Request permission
Abstract:
For a finite dimensional vector space equipped with a $\mathbb C$-algebra structure, one can define rational maps using the algebraic structure. In this paper, we describe the growth of the degree sequences for this type of rational maps.References
- N. Abarenkova, J.-Ch. Anglès d’Auriac, S. Boukraa, and J.-M. Maillard, Growth-complexity spectrum of some discrete dynamical systems, Phys. D 130 (1999), no. 1-2, 27–42. MR 1694727, DOI 10.1016/S0167-2789(99)00014-7
- J.-Ch. Anglès d’Auriac, J.-M. Maillard, and C. M. Viallet, On the complexity of some birational transformations, J. Phys. A 39 (2006), no. 14, 3641–3654. MR 2220002, DOI 10.1088/0305-4470/39/14/009
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Eric Bedford, The dynamical degrees of a mapping, Proceedings of the Workshop Future Directions in Difference Equations, Colecc. Congr., vol. 69, Univ. Vigo, Serv. Publ., Vigo, 2011, pp. 3–13. MR 2905566
- Eric Bedford and Kyounghee Kim, On the degree growth of birational mappings in higher dimension, J. Geom. Anal. 14 (2004), no. 4, 567–596. MR 2111418, DOI 10.1007/BF02922170
- Eric Bedford and Kyounghee Kim, Degree growth of matrix inversion: birational maps of symmetric, cyclic matrices, Discrete Contin. Dyn. Syst. 21 (2008), no. 4, 977–1013. MR 2399446, DOI 10.3934/dcds.2008.21.977
- Eric Bedford and Tuyen Trung Truong, Degree complexity of birational maps related to matrix inversion, Comm. Math. Phys. 298 (2010), no. 2, 357–368. MR 2669440, DOI 10.1007/s00220-010-1063-2
- S. Boukraa, S. Hassani, and J.-M. Maillard, Noetherian mappings, Phys. D 185 (2003), no. 1, 3–44. MR 2019672, DOI 10.1016/S0167-2789(03)00177-5
- Dominique Cerveau and Julie Déserti, Itération d’applications rationnelles dans les espaces de matrices, Conform. Geom. Dyn. 15 (2011), 72–112. MR 2833474, DOI 10.1090/S1088-4173-2011-00228-1
- Nguyen Bac Dang, Degrees of iterates of rational maps on normal projective varieties, available at arXiv:1701.07760[math.AG].
- J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169. MR 1867314, DOI 10.1353/ajm.2001.0038
- Tien-Cuong Dinh and Viêt-Anh Nguyên, Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv. 86 (2011), no. 4, 817–840. MR 2851870, DOI 10.4171/CMH/241
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, On the dynamical degrees of meromorphic maps preserving a fibration, Commun. Contemp. Math. 14 (2012), no. 6, 1250042, 18. MR 2989646, DOI 10.1142/S0219199712500423
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Charles Favre and Mattias Jonsson, Dynamical compactifications of $\textbf {C}^2$, Ann. of Math. (2) 173 (2011), no. 1, 211–248. MR 2753603, DOI 10.4007/annals.2011.173.1.6
- Charles Favre and Elizabeth Wulcan, Degree growth of monomial maps and McMullen’s polytope algebra, Indiana Univ. Math. J. 61 (2012), no. 2, 493–524. MR 3043585, DOI 10.1512/iumj.2012.61.4555
- Sarah Koch and Roland K. W. Roeder, Computing dynamical degrees of rational maps on moduli space, Ergodic Theory Dynam. Systems 36 (2016), no. 8, 2538–2579. MR 3570024, DOI 10.1017/etds.2015.29
- Jan-Li Lin, Pulling back cohomology classes and dynamical degrees of monomial maps, Bull. Soc. Math. France 140 (2012), no. 4, 533–549 (2013). MR 3059849, DOI 10.24033/bsmf.2635
- Viêt-Anh Nguyên, Algebraic degrees for iterates of meromorphic self-maps of ${\Bbb P}^k$, Publ. Mat. 50 (2006), no. 2, 457–473. MR 2273670, DOI 10.5565/PUBLMAT_{5}0206_{1}0
- Keiji Oguiso, A remark on dynamical degrees of automorphisms of hyperkähler manifolds, Manuscripta Math. 130 (2009), no. 1, 101–111. MR 2533769, DOI 10.1007/s00229-009-0271-6
- Luc Pirio and Francesco Russo, Quadro-quadric Cremona maps and varieties 3-connected by cubics: semi-simple part and radical, Internat. J. Math. 24 (2013), no. 13, 1350105, 33. MR 3158577, DOI 10.1142/S0129167X1350105X
- Luc Pirio and Francesco Russo, Quadro-quadric Cremona transformations in low dimensions via the $JC$-correspondence, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 1, 71–111 (English, with English and French summaries). MR 3330541, DOI 10.5802/aif.2839
- Luc Pirio and Francesco Russo, The $XJC$-correspondence, J. Reine Angew. Math. 716 (2016), 229–250. MR 3518377, DOI 10.1515/crelle-2014-0052
- Rohini Ramadas, Hurwitz correspondences on compactifications of $\mathcal {M}_{0,N}$, available at arXiv:1510.07277[math.AG].
- Rohini Ramadas, Dynamical degrees of Hurwitz correspondences, available at arXiv:1602.02846[math.AG].
- Alexander Russakovskii and Bernard Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897–932. MR 1488341, DOI 10.1512/iumj.1997.46.1441
- Tuyen Trung Truong, (Relative) dynamical degrees of rational maps over an algebraic closed field, available at arXiv:1501.01523 [math.AG].
- A. V. Usnich, A discrete dynamical system acting on pairs of matrices, Dokl. Nats. Akad. Nauk Belarusi 53 (2009), no. 3, 21–24, 124 (Russian, with English and Russian summaries). MR 2605435
Bibliographic Information
- Charles Favre
- Affiliation: CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
- MR Author ID: 641179
- Email: charles.favre@polytechnique.edu
- Jan-Li Lin
- Affiliation: Department of Mathematics, Northwestern University, Evanston, IL 60208
- MR Author ID: 711202
- Email: janlin@math.northwestern.edu
- Received by editor(s): September 14, 2016
- Received by editor(s) in revised form: May 2, 2017
- Published electronically: October 25, 2017
- Additional Notes: The first author was supported by the ERC-starting grant project “Nonarcomp” no.307856.
- © Copyright 2017 American Mathematical Society
- Journal: Conform. Geom. Dyn. 21 (2017), 353-368
- MSC (2010): Primary 37F10
- DOI: https://doi.org/10.1090/ecgd/312
- MathSciNet review: 3716204