Almost sure invariance principle for non-autonomous holomorphic dynamics in $\mathbb {P}^k$
Author:
Turgay Bayraktar
Journal:
Conform. Geom. Dyn. 22 (2018), 45-61
MSC (2010):
Primary 37F10, 60F17, 32H50
DOI:
https://doi.org/10.1090/ecgd/319
Published electronically:
May 31, 2018
MathSciNet review:
3807763
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove an almost sure invariance principle, a strong form of approximation by Brownian motion, for non-autonomous holomorphic dynamical systems on complex projective space $\mathbb {P}^k$ for Hölder continuous and DSH observables.
- Turgay Bayraktar, Ergodic properties of random holomorphic endomorphisms of $\Bbb P^k$, Int. Math. Res. Not. IMRN 4 (2015), 927–959. MR 3340342, DOI https://doi.org/10.1093/imrn/rnt226
- Turgay Bayraktar, Corrigendum to: Ergodic properties of random holomorphic endomorphisms of $\Bbb {P}^k$ [ MR3340342], Int. Math. Res. Not. IMRN 14 (2015), 6005–6009. MR 3384466, DOI https://doi.org/10.1093/imrn/rnv168
- Jean-Yves Briend and Julien Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de ${\rm P}^k(\mathbf C)$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 145–159 (French, with English and French summaries). MR 1863737, DOI https://doi.org/10.1007/s10240-001-8190-4
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI https://doi.org/10.1007/BF02591353
- Serge Cantat and Stéphane Le Borgne, Théorème limite central pour les endomorphismes holomorphes et les correspondances modulaires, Int. Math. Res. Not. 56 (2005), 3479–3510 (French). MR 2200586, DOI https://doi.org/10.1155/IMRN.2005.3479
- Christophe Cuny and Florence Merlevède, Strong invariance principles with rate for “reverse” martingale differences and applications, J. Theoret. Probab. 28 (2015), no. 1, 137–183. MR 3320963, DOI https://doi.org/10.1007/s10959-013-0506-z
- Jean-Pierre Conze and Albert Raugi, Limit theorems for sequential expanding dynamical systems on $[0,1]$, Ergodic theory and related fields, Contemp. Math., vol. 430, Amer. Math. Soc., Providence, RI, 2007, pp. 89–121. MR 2331327, DOI https://doi.org/10.1090/conm/430/08253
- Tien-Cuong Dinh and Christophe Dupont, Dimension de la mesure d’équilibre d’applications méromorphes, J. Geom. Anal. 14 (2004), no. 4, 613–627 (French, with English summary). MR 2111420, DOI https://doi.org/10.1007/BF02922172
- Tien-Cuong Dinh and Viêt-Anh Nguyên, Characterization of Monge-Ampère measures with Hölder continuous potentials, J. Funct. Anal. 266 (2014), no. 1, 67–84. MR 3121721, DOI https://doi.org/10.1016/j.jfa.2013.08.026
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Nessim Sibony, Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differential Geom. 84 (2010), no. 3, 465–488. MR 2669362
- Tien-Cuong Dinh and Nessim Sibony, Decay of correlations and the central limit theorem for meromorphic maps, Comm. Pure Appl. Math. 59 (2006), no. 5, 754–768. MR 2172806, DOI https://doi.org/10.1002/cpa.20119
- Tien-Cuong Dinh and Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), no. 1, 221–258 (French, with English summary). MR 2208805, DOI https://doi.org/10.4171/CMH/50
- Henry de Thélin, Endomorphismes pseudo-aléatoires dans les espaces projectifs I, Manuscripta Math. 142 (2013), no. 3-4, 347–367 (French, with English and French summaries). MR 3117166, DOI https://doi.org/10.1007/s00229-012-0603-9
- Christophe Dupont, Bernoulli coding map and almost sure invariance principle for endomorphisms of $\Bbb P^k$, Probab. Theory Related Fields 146 (2010), no. 3-4, 337–359. MR 2574731, DOI https://doi.org/10.1007/s00440-008-0192-4
- Rick Durrett, Probability: theory and examples, 4th ed., Cambridge Series in Statistical and Probabilistic Mathematics, vol. 31, Cambridge University Press, Cambridge, 2010. MR 2722836
- John Erik Fornaess and Nessim Sibony, Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992) Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 135–182. MR 1369137
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
- M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739–741 (Russian). MR 0251785
- Nicolai Haydn, Convergence of the transfer operator for rational maps, Ergodic Theory Dynam. Systems 19 (1999), no. 3, 657–669. MR 1695914, DOI https://doi.org/10.1017/S0143385799130190
- Nicolai Haydn, Matthew Nicol, Andrew Török, and Sandro Vaienti, Almost sure invariance principle for sequential and non-stationary dynamical systems, Trans. Amer. Math. Soc. 369 (2017), no. 8, 5293–5316. MR 3646763, DOI https://doi.org/10.1090/tran/6812
- John H. Hubbard and Peter Papadopol, Superattractive fixed points in ${\bf C}^n$, Indiana Univ. Math. J. 43 (1994), no. 1, 321–365. MR 1275463, DOI https://doi.org/10.1512/iumj.1994.43.43014
- M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, DOI https://doi.org/10.1017/S0143385700002030
- A. Korepanov, Z. Kosloff, and I. Melbourne, Martingale-coboundary decomposition for families of dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 4, 859–885. MR 3795019, DOI https://doi.org/10.1016/j.anihpc.2017.08.005
- Ian Melbourne and Matthew Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys. 260 (2005), no. 1, 131–146. MR 2175992, DOI https://doi.org/10.1007/s00220-005-1407-5
- Han Peters, Non-autonomous dynamics in $\Bbb P^k$, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1295–1304. MR 2158406, DOI https://doi.org/10.1017/S0143385704000987
- Feliks Przytycki and Juan Rivera-Letelier, Statistical properties of topological Collet-Eckmann maps, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 1, 135–178 (English, with English and French summaries). MR 2332354, DOI https://doi.org/10.1016/j.ansens.2006.11.002
- Walter Philipp and William Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 2 (1975), no. 161,, 161, iv+140. MR 433597, DOI https://doi.org/10.1090/memo/0161
- Feliks Przytycki, Mariusz Urbański, and Anna Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. I, Ann. of Math. (2) 130 (1989), no. 1, 1–40. MR 1005606, DOI https://doi.org/10.2307/1971475
- Nessim Sibony, Dynamique des applications rationnelles de $\mathbf P^k$, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185 (French, with English and French summaries). MR 1760844
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 37F10, 60F17, 32H50
Retrieve articles in all journals with MSC (2010): 37F10, 60F17, 32H50
Additional Information
Turgay Bayraktar
Affiliation:
Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
MR Author ID:
1009679
Email:
tbayraktar@sabanciuniv.edu
Keywords:
Almost sure invariance principle,
Central Limit Theorem,
holomorphic maps,
non-autonomous dynamical systems
Received by editor(s):
April 8, 2017
Received by editor(s) in revised form:
November 14, 2017, and January 14, 2018
Published electronically:
May 31, 2018
Article copyright:
© Copyright 2018
American Mathematical Society