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BILIPSCHITZ EQUIVALENCE OF TREES

AND HYPERBOLIC FILLINGS

JEFF LINDQUIST

Abstract. We show that quasi-isometries between uniformly discrete bounded
geometry spaces that satisfy linear isoperimetric inequalities are within bounded
distance to bilipschitz equivalences. We apply this result to regularly branch-
ing trees and hyperbolic fillings of compact, Ahlfors regular metric spaces.

1. Introduction

In this note we combine results from [Wh] with results from [MPR] both to gen-
eralize a theorem of Papasoglu [Pa] and to prove that the vertex sets of hyperbolic
fillings of quasisymmetric, compact, Ahlfors regular metric spaces are bilipschitz
equivalent. In [Pa], Papasoglu proves that (the vertices of) k-ary homogeneous
trees are bilipschitz equivalent whenever k ≥ 3. A map between metric spaces
f : (X, dX) → (Y, dY ) is a bilipschitz equivalence if it is a bijection and there exists
a constant C > 0 such that for all x, x′ ∈ X we have

1

C
dX(x, x′) ≤ dY (f(x), f(x

′)) ≤ CdX(x, x′).

To view a connected graph X = (VX , EX) as a metric space, we use the graph
metric. This means each edge of X is taken to be isometric to an interval of length
1. For x, x′ ∈ VX , it follows that the quantity dX(x, x′) is the fewest number of
edges required to connect x to x′.

Bilipschitz equivalence is a strong property that is not immediate in many situ-
ations. One has the weaker notion of a quasi-isometry which is a map that is bilip-
schitz at large scales. More formally, a map between metric spaces f : (X, dX) →
(Y, dY ) is a quasi-isometry if there exist constants C,D > 0 such that for all
x, x′ ∈ X we have

1

C
dX(x, x′)−D ≤ dY (f(x), f(x

′)) ≤ CdX(x, x′) +D

and such that every point in Y is within distance C of f(X). Note that a bilipschitz
equivalence is a bijective quasi-isometry with constant D = 0. A natural question
to ask is whether a quasi-isometry can be promoted to a bilipschitz equivalence
under the right conditions. A positive answer is given by Whyte [Wh] who showed
that a quasi-isometry between UDBG spaces is within bounded distance from a
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bilipschitz equivalence if a certain homological condition holds. Here a UDBG
space is a metric space that is uniformly discrete with bounded geometry. A metric
space (Z, d) is uniformly discrete if there is a constant c > 0 such that for all
z, z′ ∈ Z with z �= z′ we have d(z, z′) > c. A metric space (Z, d) is said to have
bounded geometry if it is uniformly discrete and if for all r > 0 there is a constant
Nr > 0 such that for all z ∈ Z we have |B(z, r)| ≤ Nr. Here and elsewhere, if A is
a set, then |A| denotes the cardinality of A. Also, B(z, r) is the open ball of radius
r centered at z.

Whyte’s results involve boundary estimates which are reminiscent of linear isoperi-
metric inequalities. Let X = (VX , EX) be a graph. For a subset A ⊆ VX , we define
the boundary of A as ∂A = {x ∈ VX : x /∈ A and d(x,A) ≤ 1}. To say X (or VX)
satisfies a linear isoperimetric inequality means that there is a constant C > 0 such
that for all finite A ⊆ VX we have |A| ≤ C|∂A|.

For graphs X = (VX , EX), we will always view the spaces VX as metric spaces
with the restriction of the graph metric. Our conditions on X will imply that the
spaces VX are UDBG spaces. This allows us to apply the results in [Wh] to prove
the following theorem.

Theorem 1.1. Let X and Y be connected graphs with their graph metrics. Suppose
X and Y are quasi-isometric, have bounded degree, and satisfy linear isoperimetric
inequalities. Then, the vertex sets VX and VY are bilipschitz equivalent. Moreover,
if f : X → Y is a quasi-isometry, then there is a bilipschitz equivalence within
bounded distance of f |VX

.

When referring to distance between functions, we use the sup norm. This means
that f, g : X → Y are within bounded distance if supx∈X dY (f(x), g(x)) < ∞. In
Theorem 1.1, the distance between f and the bilipschitz equivalence can be bounded
by a quantity that depends on the data of the theorem statement. By data we
mean the quasi-isometry constants, the degrees of X and Y , and the isoperimetric
inequality constants of X and Y . A proof of this dependency involves following the
proofs of both [Wh, Theorem 4.1] and [Wh, Theorem 7.6] with the constants used
in the proof of Theorem 1.1 and will be omitted.

Theorem 1.1 allows us to generalize Papasoglu’s result to more exotic trees that
satisfy linear isoperimetric inequalities. We call these trees essentially pseudo-
regular trees. Such trees were studied in the work of Mart́ınez-Pérez and Rodŕıguez
[MPR]. Their results, together with a quasisymmetric characterization from [DS97],
yield the following corollary.

Corollary 1.2. Let X and Y be essentially pseudo-regular trees with the graph
metric. Then, VX and VY are bilipschitz equivalent.

An essentially pseudo-regular tree is a rooted, visual tree with bounded degree
with a pseudo-regular maximal geodesically complete subtree. A tree is rooted if
it has a specified “root” vertex, pseudo-regular if it branches regularly, visual if
it does not have arbitrarily long “dead ends”, and of bounded degree if there is a
uniform bound on the number of edges connecting to any particular vertex. For
precise definitions we refer the reader to Section 2.

The class of trees in Corollary 1.2 is larger than what is considered in [Pa]. For
example, given any M ≥ 2 and any sequence (gi)i∈N with 2 ≤ gi ≤ M for each i,
there is a unique rooted tree with root O such that every vertex on level n has gn+1

children (here the level of a vertex refers to its distance to O). In this example,
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gi ≥ 2 guarantees that the tree is pseudo-regular and gi ≤ M guarantees that the
tree has bounded degree. Every vertex having children guarantees that the tree is
visual. The k-regular tree (k ≥ 3) corresponds to g1 = k and gn = k − 1 for n ≥ 2.

For more generality, one can perform a construction where the number of children
each vertex has is individually controlled (and even have some with 1 or 0 children).
In these constructions one must be careful to remain in the class of essentially
pseudo-regular trees.

A metric space (X, d) is Ahlfors Q-regular if, for μ the Hausdorff Q measure
induced by d, there are constants c, C > 0 such that for all 0 < r ≤ diam(X)
we have crQ ≤ μ(B(x, r)) ≤ CrQ. Theorem 1.1 has another corollary when one
considers hyperbolic fillings of compact, Ahlfors regular metric spaces.

Corollary 1.3. Let (Z, dZ) and (W,dW ) be quasisymmetrically equivalent, com-
pact, Ahlfors regular metric spaces. Let X = (VX , EX) and Y = (VY , EY ) be
hyperbolic fillings of Z and W . Then, VX and VY are bilipschitz equivalent.

A homeomorphism f : (X, dX) → (Y, dY ) between metric spaces is a quasisym-
metry if there exists a homeomorphism η : [0,∞) → [0,∞) such that for all distinct
x, y, z ∈ X, we have

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
.

Two metric spaces are quasisymmetrically equivalent if there is a quasisymmetry
from one onto the other. The identity map from a space to itself is a quasisymmetry,
so as a special case of Corollary 1.3 we see that any two hyperbolic fillings of a given
compact, Ahlfors regular metric space are bilipschitz equivalent.

Hyperbolic fillings are graph approximations of metric spaces formed by covering
the metric space with specific balls and connecting two balls with an edge if they
overlap. For precise constructions, we refer the reader to [BuS], [BP], and [Lin16].
It follows from the work in [MPR] that hyperbolic fillings of these spaces satisfy
a linear isoperimetric inequality and thus quasi-isometries may be promoted to
bilipschitz equivalences in this setting. As fillings of quasisymmetric spaces are
quasi-isometric, the corollary follows.

Section 2 contains definitions and preliminaries for the rest of the paper. In
Section 3 we state the relevant results from [Wh] and [MPR]. In Section 4 we prove
the results stated in the introduction, namely Theorem 1.1 and its two corollaries.

2. Definitions and preliminaries

Here we make our definitions precise.
We wish to impose a condition on trees that forces regular branching. In [MPR]

there is such a condition which they call pseudo-regularity. To fully define this we
need some notation, also borrowed from [MPR]. Given a tree T and points x, y ∈ T ,
we let [xy] denote the (unique) geodesic connecting x to y. For a fixed point v ∈ T
and any point x ∈ T , we define

T v
x = {y ∈ T : x ∈ [vy]}.

Heuristically, T v
x is the subtree of T starting at x that grows away from v.

In the following, S(v0, t) is the sphere of radius t centered at v0 in the graph
metric.
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Definition 2.1. The degree of a vertex v in a graph is the number of edges e
emanating from v, which we write as deg(v). A graph has bounded degree if there
is a constant μ > 0 such that for all v ∈ V we have deg(v) ≤ μ.

A rooted graph is a graph with a distinguished vertex v0. If the graph is also a
tree, we call it a rooted tree. A rooted graph T is visual if there is a constant C > 0
such that for every vertex v ∈ V , there is an infinite geodesic ray I with endpoint
v0 such that d(v, I) ≤ C. In the language of [MPR], this means v0 is a pole of T .

A rooted tree (T, v0) is geodesically complete if whenever f : [0, t] → T is an
isometric embedding with f(0) = v0, there is an isometric embedding F : [0,∞) →
T such that f(s) = F (s) for all s ∈ [0, t]. Given a rooted tree (T, v0), we define
(T∞, v0) as the unique geodesically complete subtree with the same root v0 that
is maximal under inclusion. That a unique maximal geodesically complete subtree
exists follows from Zorn’s Lemma; see [MPM, Theorem 10.1].

Given a rooted tree (T, v0) and K > 0 we say (T, v0) is K-pseudo-regular if for ev-
ery t ∈ N and every a ∈ S(v0, t), there exist at least two points in S(v0, t+K) ∩ T v0

a .
We say (T, v0) is pseudo-regular if it is K-pseudo-regular for some K. It is easy to
see that pseudo-regular trees are geodesically complete. Intuitively, a K-pseudo-
regular tree branches off from any infinite geodesic based at root v0 at least once
every K levels. This leads to the bound |B(a,NK)| ≥ (2N − 1)K for any vertex a
in a K-pseudo-regular tree, where |B(a,NK)| denotes the number of vertices in the
NK ball centered at a. A rooted tree is essentially pseudo-regular if it is visual, has
bounded degree, and the maximal geodesically complete subtree is pseudo-regular.

Let X = (V,E) be a connected graph. The combinatorial Cheeger isoperimetric
constant of X is h(X) = infA |∂A|/|A| where A ranges over nonempty finite subsets
of V ; this constant quantifies the existence of an isoperimetric inequality in X. In
particular, X satisfies a linear isoperimetric inequality if and only if h(X) > 0.

Remark 2.2. We note that if (T, v0) is visual, then from [MPR, Proposition 3.8] it
follows that there is a quasi-isometry (T, v0) → (T∞, v0).

We will use the end space definition from [MPR] of the boundary at infinity of
a tree. For this, let (T, v0) be a rooted tree.

Definition 2.3. The end space of the rooted tree (T, v0) is

end(T, v0) = {F : [0,∞) → T |F (0) = v0 and F is an isometric embedding}.

We define the Gromov product at infinity of two elements F, F ′ ∈ end(T, v0) as

(F |F ′)v0 = sup{t ≥ 0 : F (t) = F ′(t)}.

We then define a metric d = dv0 on end(T, v0) by d(F, F ′) = e−(F |F ′)v0 . Here d
is actually an ultrametric. This means if F,G,H ∈ end(T, v0), then d(F,H) ≤
max(d(F,G), d(G,H)). We often write ∂∞T for end(T, v0).

In [DS97], there is a characterization of metric spaces that are quasisymmetrically
equivalent to the standard 1/3 Cantor set, denoted here as C1/3.

Theorem 2.4 ([DS97, Theorem 15.11]). A compact metric space (X, d) is qua-
sisymmetrically equivalent to C1/3 if it is bounded, complete, doubling, uniformly
perfect, and uniformly disconnected.

For convenience, we recall some of the terminology. Let (X, d) be a metric space.
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From [DS97, Definition 15.1], X is uniformly disconnected if there is a constant
C > 0 such that for each x ∈ X and r > 0 there is a closed subset A ⊆ X with
B(x, r/C) ⊆ A ⊆ B(x, r) and d(A,X \A) ≥ r/C. Ultrametric spaces are uniformly
disconnected by [DS97, Proposition 15.7].

X is uniformly perfect if there are constants C > 1 and R > 0 such that for
every x ∈ X and 0 < r < R there is an x′ ∈ X with r/C < d(x, x′) ≤ r.

X is doubling if there exists a constant N > 0 such that every ball B(x, r) ⊆ X
can be covered by at most N balls of radius r/2.

Complete, bounded, doubling metric spaces are compact as bounded, doubling
metric spaces are totally bounded.

For Corollary 1.2 we are concerned with essentially pseudo-regular trees. By
Remark 2.2, these trees are quasi-isometric to pseudo-regular trees with bounded
degree. We now prove that the end spaces of pseudo-regular trees with bounded
degree satisfy the criteria in Theorem 2.4.

Lemma 2.5. Let (T, v0) be a pseudo-regular tree with bounded degree. Then, ∂∞T
is quasisymmetrically equivalent to C1/3.

Proof. With [DS97, Theorem 15.11] it suffices to show ∂∞T is bounded, complete,
doubling, uniformly perfect, and uniformly disconnected.

From [MPR, Proposition 3.3] ∂∞T is a complete, bounded ultrametric space.
Thus, ∂∞T is also uniformly disconnected by [DS97, Proposition 15.7].

The fact that ∂∞T is uniformly perfect follows from the fact that (T, v0) is
pseudo-regular. This is proven in [MPR, Proposition 3.20].

We show ∂∞T is doubling. Let B(F, r) be a ball in ∂∞T . Let

M = sup{m : F (k) = G(k) for all G ∈ B(F, r), k ≤ m}.
If M = ∞, then B(F, r) consists of a single point, so in this case it can be covered
by one ball of radius r/2. Otherwise, r ≥ e−(M+1) and so r/2 > e−(M+2). Let
deg(v) ≤ μ for v ∈ V . Hence, if G ∈ B(F, r), then G(M) = F (M) and there are at
most μ2 possibilities for G(M + 2). If G,H ∈ B(F, r) are such that G(M + 2) =
H(M + 2), then d(G,H) ≤ e−(M+2) < r/2. It follows that B(F, r) is contained in
μ2 balls of radius r/2. �

The quasisymmetries induced on the end spaces of pseudo-regular trees with
bounded degree give rise to quasi-isometries of essentially pseudo-regular trees.

Lemma 2.6. Let (T, v0) and (U,w0) be essentially pseudo-regular trees. Then T
and U are quasi-isometric.

It is important that essentially pseudo-regular trees are visual so as to apply
Remark 2.2. The construction of a quasi-isometry between T∞ and U∞ is given by
[BuS, Theorem 7.2.1]; we provide the main idea of the construction here.

Sketch of proof of Lemma 2.6. By Remark 2.2 it suffices to construct a quasi-iso-
metry f between (T∞, v0) and (U∞, w0). By Lemma 2.5, there is a quasisymmetry
ϕ : ∂∞T∞ → ∂∞U∞. For v ∈ T∞ set

Bv = {F ∈ ∂∞T∞ : v ∈ F ([0,∞))}
and likewise define Bw for w ∈ U∞. Define f(v) = w where w ∈ U∞ is a vertex of
maximal distance from w0 such that ϕ(Bv) ⊆ Bw (such a vertex exists as Bw0

=
∂∞U∞). We then show there is a constant C > 0 such that if v, v′ ∈ T∞ with
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|v−v′| ≤ 1, then |f(v)−f(v′)| ≤ C. From our tree structure we may assume without
loss of generality that Bv′ ⊆ Bv. Let w = f(v) and w′ = f(v′). We conclude
that Bw′ ⊆ Bw and, by using a common point and the quasisymmetry condition,
that there is a uniform bound on |w − w′|. Constructing g : (U∞, w0) → (T∞, v0)
similarly and checking that f and g are coarse inverses of one another completes
the proof. �

We will also work with some homological terminology as in [Wh]. In the remain-
der of this section we define what is needed.

Given a graph X = (V,E) with bounded degree, we define a 0-chain c to be
a function c : V → Z and a 1-chain b to be a function b : E → Z. We represent
0-chains as formal sums c =

∑
v∈V cvv with cv = c(v) and 1-chains as formal

sums b =
∑

e∈E bee with be = b(e). We call a chain bounded if its coefficients

are bounded. Let Cb
0(X) denote the set of bounded 0-chains and Cb

1(X) the set
of bounded 1-chains. Given an orientation on E, meaning we view each edge as
an ordered pair e = (e+, e−), we define the boundary map ∂ : Cb

1(X) → Cb
0(X) by

defining ∂e = e+ − e− and extending linearly. The orientation on E is only used in
this paper to define ∂.

We now define uniformly finite homology for UDBG spaces. This is the tool
used in [Wh]. Let Z be a UDBG space. For r > 0, define a graph Xr = (Vr, Er)
where Vr = Z and

Er = {(z, z′) : z, z′ ∈ Z, 0 < d(z, z′) ≤ r}.
This is the 1-dimensional subcomplex of the r-Rips complex as defined in [Wh].
The uniformly finite homology of Z is defined as a limit of the homology formed

from Xr as r → ∞ and the sets of chains are denoted Cuf
0 (Z) and Cuf

1 (Z). This

means Cuf
0 (Z) = Cb

0(X1) and Cuf
1 (Z) =

⋃
r>0C

b
1(Xr).

Given UDBG spaces Z and W , a chain c ∈ Cuf
0 (Z), and a quasi-isometry

f : Z → W , we define f∗(c) ∈ Cuf
0 (W ) as follows. To each z ∈ Z, associate the

0-chain z = 1 · z. We define f∗(z) := 1 · f(z) ∈ Cuf
0 (W ). We then extend linearly,

so if c =
∑

z∈Z czz we have

f∗(c) =
∑
z∈Z

czf∗(z).

We see that f∗(c) ∈ Cuf
0 (W ) as this can be written

f∗(c) =
∑
w∈W

( ∑
{z|f(z)=w}

cz

)
w

and, as f is a quasi-isometry and Z is a UDBG space, there is a uniform bound
on |{z|f(z) = w}|.

We define an equivalence relation on Cuf
0 (Z) by setting c ∼ c′ if and only if

there exists b ∈ Cuf
1 (Z) such that ∂b = c − c′. We let [c] denote the equivalence

class of c under this relation. Let Z =
∑

z∈Z z. We call [Z] the fundamental class
of Z.

Remark 2.7. One reason Whyte uses the Rips complex is that he has no graph
structure. In our situation (specifically in a graph with bounded degree), one
obtains equivalent homology from the equivalence c ∼ c′ if and only if there exists
b ∈ Cb

1(X) such that ∂b = c− c′.
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For the graphsX = (VX , EX) that we consider, the spaces VX are UDBG spaces.
Uniform discreteness follows from using the graph metric, while the bounded ge-
ometry condition follows as our graphs have bounded degree.

3. Results from Whyte and Mart́ınez-Pérez and Rodŕıguez

Here we state the results from [Wh] and [MPR] relevant for our setting. We start
with Whyte’s criteria for promotion of a quasi-isometry to a bilipschitz equivalence.

Theorem 3.1 ([Wh, Theorem 4.1]). Let f : Z → W be a quasi-isometry between
UDBG spaces with f∗(Z) ∼ W. Then, there is a bilipschitz map at bounded distance
from f .

To apply this, we need a condition that implies [f∗(Z) − W] = [0], where [0]
is the equivalence class corresponding to the 0-chain with all coefficients 0. This
is achieved using an isoperimetric inequality and Theorem 3.2. Given a UDBG
metric space (Z, d), a subset S ⊆ Z, and r > 0, we define the r-boundary of S
as the set ∂r(S) = {z ∈ Z : z /∈ S and d(z, S) ≤ r}. Note that for vertex sets of
graphs with distances induced from the graph metric, if A is a set of vertices, then
∂1A = ∂A. Given a 0-chain c =

∑
czz and a finite subset S ⊆ Z, we write∑
S

c =
∑
s∈S

cs.

Theorem 3.2 ([Wh, Theorem 7.6]). Let Z be a UDBG space and let c ∈ Cuf
0 (Z).

Then, [c] = [0] if and only if there are r, C > 0 such that for all finite S ⊆ Z we
have ∣∣∑

S

c
∣∣ ≤ C|∂r(S)|.

The main result from [MPR] that concerns us is the following.

Theorem 3.3 ([MPR, Theorem 4.15]). Let X be a hyperbolic, rooted, visual graph
of bounded degree. Then, h(X) > 0 if and only if ∂∞X is uniformly perfect for
some visual metric.

Here ∂∞X refers to the Gromov boundary of X with a visual metric. While the
proof is notationally involved, we summarize the main ideas. This summary will
use results from [MPR]; the exact theorems and lemmas used in their proof can be
found in their paper.

Summary of proof of Theorem 3.3. It suffices to prove the result for a hyperbolic
approximation X ′ in place of X. The boundary at infinity, ∂∞X = ∂∞X ′ has
strongly bounded geometry. From this and the uniformly perfect condition, one
studies the combinatorics of X ′. By using a refinement of X ′, one passes to a
hyperbolic approximation X ′′ for which the map f : VX′′ → R defined by f(v) =
k for all v ∈ Vk satisfies conditions which are sufficient to conclude h(X) > 0
(particularly |∇xyf | ≤ c1 and Δf(x) ≥ c2 > 0 for some c1, c2 > 0). �

We illustrate the main ideas of how we use the above theorems with an example.

Example 3.4. Let X = (V,E) be the unique infinite rooted tree where every
vertex has two children (if o is the root and x, y ∈ V are distinct and connected
by an edge, we say x is a parent of y and y is a child of x if |x− o| + 1 = |y − o|).



232 JEFF LINDQUIST

One can verify that X satisfies a linear isoperimetric inequality (either directly or
by showing ∂∞X � C1/3 and using Theorem 3.3).

Define f : V → V by setting f(o) = o and mapping each nonroot vertex to its
parent. It is easy to check that f is a quasi-isometry. We compute f∗(V) = 2V+o.
Thus, [f∗(V) − V] = [V + o] = [0] by Theorem 3.2 (the chain sum condition is
essentially the linear isoperimetric inequality for X).

Theorem 3.1 now tells us that f is within bounded distance to a bilipschitz
equivalence between V and V . To see an interpretation as to why this is so, we
find a chain b ∈ Cb

1(X) with ∂b = f∗(V)−V. To define the orientation for ∂, we
note each edge e consists of a parent and child vertex. We orient e so that ∂(e)
has weights +1 on the parent and −1 on the child. Then, consider b =

∑
E e. A

quick computation shows ∂b = V + o = f∗(V) −V. One can interpret the chain
b as moving the mass assigned by a bijection (corresponding to each vertex in V
having mass 1, which is the chain V) to that assigned by f (corresponding to the
chain f∗(V)). Indeed, f can be constructed by starting from the identity and then
“sliding” each vertex one step towards the root. In this interpretation, the weight
assigned to each edge is the (signed) number of vertices “moving” along e.

4. Proofs of results

We now combine the results in Section 3 to prove the main theorem. Recall X
and Y are assumed to be quasi-isometric, so one of these spaces satisfies a linear
isoperimetric inequality if and only if the other one does.

Proof of Theorem 1.1. Let f : X → Y be a quasi-isometry. We may assume f : VX

→ VY . By assumption, Y supports a linear isoperimetric inequality with constant
h = h(Y )−1 ∈ (0,∞), so for any finite set S ⊆ VY we have |S| ≤ h|∂S|. For
v ∈ VY we have |(f∗(VX)−VY)(v)| ≤ |f−1(v)|+ 1. As f is a quasi-isometry and
X has bounded degree, there is a constant A > 0 such that for all v ∈ VY we have
|f−1(v)| ≤ A. Indeed, if x, x′ ∈ VX are such that f(x) = f(x′), then (as f is a
quasi-isometry, say with constants C,D)

|x− x′|/C −D ≤ |f(x)− f(x′)| = 0

and so |x− x′| ≤ CD. Hence, for S ⊆ VY finite,

|
∑
S

(f∗(VX)−VY)| ≤ (A+ 1)|S| ≤ (A+ 1)h|∂S| = (A+ 1)h|∂1S|

and so [f∗(VX)−VY] = [0] by Theorem 3.2 with C = (A+ 1)h and r = 1. Thus,
by Theorem 3.1, f is within bounded distance of a bilipschitz equivalence. �

We now prove the corollaries of Theorem 1.1 and discuss the conditions in Corol-
lary 1.2.

Proof of Corollary 1.2. By Lemma 2.6 there exists a quasi-isometry f : X → Y
that maps VX to VY . As trees are hyperbolic and essentially pseudo-regular trees
are visual and have bounded degree, we may apply Theorem 3.3 to conclude that Y
supports a linear isoperimetric inequality. Thus, the result follows from Theorem
1.1. �

We examine the conditions of essential pseudo-regularity in Corollary 1.2, namely
that X and Y are rooted, visual trees with bounded degree with pseudo-regular
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maximal geodesically complete subtrees. Recall that our trees being visual is im-
portant to guarantee the existence of a quasi-isometry between the trees themselves
and their maximal geodesically complete subtrees. We use this property in Lemma
2.6. We also use the visual condition for the existence of a linear isoperimetric
inequality from [MPR, Theorem 4.15] (here Theorem 3.3); there is a similar condi-
tion in [MPR, Theorem 3.16] which must be satisfied for a tree to support a linear
isoperimetric inequality.

Pseudo-regularity guarantees that our trees branch regularly; without this con-
dition, one tree, say X, would have arbitrarily long segments with no branching. If
this is not the case for Y , then the number of vertices in balls of radius R centered
at any vertex grows exponentially in R (see the discussion in Section 2 after the
definition of pseudo-regularity; this type of bound holds uniformly for centers of
balls not in the maximal geodesically complete subtree as Y is visual). Suppose
there is a C-bilipschitz map g : VX → VY . Consider a nonbranching segment of
length M in X. Let x denote its midpoint vertex. Then, the ball B(g(x), R) has
at least cR vertices for some c > 1 that depends only on Y . If M > 3CR, then
there are at most 2CR+1 vertices on our nonbranching segment that could be the
preimage of these cR vertices. As 2CR/cR < 1 for large R, no such g can exist.
Indeed, similar reasoning shows that such trees cannot even be quasi-isometric.

The bounded degree condition is similar; if the degree of Y is at most μ < ∞,
then the number of vertices in any ball B(y,R) is bounded by cμR+1 for some c > 0.
Hence, if X has unbounded degree and a bilipschitz equivalence g exists, we would
arrive at a contradiction by considering g(B(xn, 1)) for a sequence of vertices xn

with strictly increasing degree in X.

Proof of Corollary 1.3. Note that Ahlfors regular metric spaces are uniformly per-
fect. By a similar construction to that in Lemma 2.6, it is known that X and Y are
quasi-isometric (see [BuS, Theorem 7.2.1] for a detailed proof or [Lin16, Lemma
3.6] for a summarized proof). Theorem 3.3 shows Y satisfies a linear isoperimetric
inequality, so Theorem 1.1 applies. �
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