Asymptotics of the translation flow on holomorphic maps out of the poly-plane
HTML articles powered by AMS MathViewer
- by Dmitri Gekhtman PDF
- Conform. Geom. Dyn. 23 (2019), 1-16 Request permission
Abstract:
We study the family of holomorphic maps from the polydisk to the disk which restrict to the identity on the diagonal. In particular, we analyze the asymptotics of the orbit of such a map under the conjugation action of a unipotent subgroup of $\operatorname {PSL}_2(\mathbb {R})$. We discuss an application of our results to the study of the Carathéodory metric on Teichmüller space.References
- Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002. MR 1882259, DOI 10.1090/gsm/044
- Frédéric Bayart and Étienne Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, vol. 179, Cambridge University Press, Cambridge, 2009. MR 2533318, DOI 10.1017/CBO9780511581113
- G. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entiéres, Cr. R. Acad. Sci. Paris 189 (1929), 473-475.
- A. Bonilla and K.-G. Grosse-Erdmann, On a theorem of Godefroy and Shapiro, Integral Equations Operator Theory 56 (2006), no. 2, 151–162. MR 2264513, DOI 10.1007/s00020-006-1423-7
- D. Gekhtman and V. Markovic, Classifying complex geodesics for the Carathéodory metric on low-dimensional Teichmüller spaces, arXiv:1711.04722 (2017).
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Greg Knese, A Schwarz lemma on the polydisk, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2759–2768. MR 2317950, DOI 10.1090/S0002-9939-07-08766-7
- Irwin Kra, The Carathéodory metric on abelian Teichmüller disks, J. Analyse Math. 40 (1981), 129–143 (1982). MR 659787, DOI 10.1007/BF02790158
- Vladimir Markovic, Carathéodory’s metrics on Teichmüller spaces and $L$-shaped pillowcases, Duke Math. J. 167 (2018), no. 3, 497–535. MR 3761105, DOI 10.1215/00127094-2017-0041
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- John Smillie and Barak Weiss, Minimal sets for flows on moduli space, Israel J. Math. 142 (2004), 249–260. MR 2085718, DOI 10.1007/BF02771535
Additional Information
- Dmitri Gekhtman
- Affiliation: The Division of Physics, Mathematics and Astronomy, Caltech, 1200 E. California Blvd., Pasadena, California 91125
- MR Author ID: 1213354
- Email: dgekhtma@caltech.edu
- Received by editor(s): July 7, 2017
- Received by editor(s) in revised form: March 16, 2018
- Published electronically: February 4, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Conform. Geom. Dyn. 23 (2019), 1-16
- MSC (2010): Primary 32A10; Secondary 32G15, 30F60
- DOI: https://doi.org/10.1090/ecgd/330
- MathSciNet review: 3905961