The realization problem for Jørgensen numbers
Authors:
Yasushi Yamashita and Ryosuke Yamazaki
Journal:
Conform. Geom. Dyn. 23 (2019), 17-31
MSC (2010):
Primary 30F40, 57M50
DOI:
https://doi.org/10.1090/ecgd/331
Published electronically:
February 25, 2019
MathSciNet review:
3916474
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $G$ be a two-generator subgroup of $\mathrm {PSL}(2, \mathbb {C})$. The Jørgensen number $J(G)$ of $G$ is defined by \[ J(G) = \inf \{ |\mathrm {tr}^2 A-4| + |\mathrm {tr} [A,B]-2| \: ; \: G=\langle A, B\rangle \}. \] If $G$ is a non-elementary Kleinian group, then $J(G)\geq 1$. This inequality is called Jørgensen’s inequality. In this paper, we show that, for any $r\geq 1$, there exists a non-elementary Kleinian group whose Jørgensen number is equal to $r$. This answers a question posed by Oichi and Sato. We also present our computer generated picture which estimates Jørgensen numbers from above in the diagonal slice of Schottky space.
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
- B. H. Bowditch, Markoff triples and quasi-Fuchsian groups, Proc. London Math. Soc. (3) 77 (1998), no. 3, 697–736. MR 1643429, DOI https://doi.org/10.1112/S0024611598000604
- Jason Callahan, Jørgensen number and arithmeticity, Conform. Geom. Dyn. 13 (2009), 160–186. MR 2525101, DOI https://doi.org/10.1090/S1088-4173-09-00196-9
- Werner Fenchel, Elementary geometry in hyperbolic space, De Gruyter Studies in Mathematics, vol. 11, Walter de Gruyter & Co., Berlin, 1989. With an editorial by Heinz Bauer. MR 1004006
- F. W. Gehring and G. J. Martin, Stability and extremality in Jørgensen’s inequality, Complex Variables Theory Appl. 12 (1989), no. 1-4, 277–282. MR 1040927, DOI https://doi.org/10.1080/17476938908814372
- Francisco González-Acuña and Arturo Ramírez, Jørgensen subgroups of the Picard group, Osaka J. Math. 44 (2007), no. 2, 471–482. MR 2351012
- Troels Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739–749. MR 427627, DOI https://doi.org/10.2307/2373814
- Troels Jørgensen and Maire Kiikka, Some extreme discrete groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 245–248. MR 0399452
- Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719–749. MR 1241870, DOI https://doi.org/10.1016/0040-9383%2893%2990048-Z
- Linda Keen and Caroline Series, The Riley slice of Schottky space, Proc. London Math. Soc. (3) 69 (1994), no. 1, 72–90. MR 1272421, DOI https://doi.org/10.1112/plms/s3-69.1.72
- Yohei Komori and Caroline Series, The Riley slice revisited, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 303–316. MR 1668296, DOI https://doi.org/10.2140/gtm.1998.1.303
- Changjun Li, Makito Oichi, and Hiroki Sato, Jørgensen groups of parabolic type II (countably infinite case), Osaka J. Math. 41 (2004), no. 3, 491–506. MR 2107659
- Changjun Li, Makito Oichi, and Hiroki Sato, Jørgensen groups of parabolic type I (finite case), Comput. Methods Funct. Theory 5 (2005), no. 2, 409–430. MR 2205423, DOI https://doi.org/10.1007/BF03321107
- Changjun Li, Makito Oichi, and Hiroki Sato, Jørgensen groups of parabolic type III (uncountably infinite case), Kodai Math. J. 28 (2005), no. 2, 248–264. MR 2153913, DOI https://doi.org/10.2996/kmj/1123767006
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- David Mumford, Caroline Series, and David Wright, Indra’s pearls, Cambridge University Press, New York, 2002. The vision of Felix Klein. MR 1913879
- Makito Oichi, A fundamental polyhedron for the figure-eight knot group, Topology Appl. 146/147 (2005), 15–19. MR 2107132, DOI https://doi.org/10.1016/j.topol.2002.10.001
- Makito Oichi and Hiroki Sato, Jørgensen numbers of discrete groups, Sūrikaisekikenkyūsho Kōkyūroku 1519 (2006), 105–118.
- R. P. Osborne and H. Zieschang, Primitives in the free group on two generators, Invent. Math. 63 (1981), no. 1, 17–24. MR 608526, DOI https://doi.org/10.1007/BF01389191
- Hiroki Sato, One-parameter families of extreme discrete groups for Jørgensen’s inequality, In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998) Contemp. Math., vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 271–287. MR 1759686, DOI https://doi.org/10.1090/conm/256/04013
- Hiroki Sato, The Picard group, the Whitehead link and Jørgensen groups, Progress in analysis, Vol. I, II (Berlin, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 149–158. MR 2032679
- Hiroki Sato, The Jørgensen number of the Whitehead link group, Bol. Soc. Mat. Mexicana (3) 10 (2004), no. Special Issue, 495–502. MR 2199365
- Caroline Series, Ser Peow Tan, and Yasushi Yamashita, The diagonal slice of Schottky space, Algebr. Geom. Topol. 17 (2017), no. 4, 2239–2282. MR 3685607, DOI https://doi.org/10.2140/agt.2017.17.2239
- Ser Peow Tan, Yan Loi Wong, and Ying Zhang, Generalized Markoff maps and McShane’s identity, Adv. Math. 217 (2008), no. 2, 761–813. MR 2370281, DOI https://doi.org/10.1016/j.aim.2007.09.004
- A. Yu. Vesnin and A. V. Masleĭ, On Jørgensen numbers and their analogs for groups of figure-eight orbifolds, Sibirsk. Mat. Zh. 55 (2014), no. 5, 989–1000 (Russian, with Russian summary); English transl., Sib. Math. J. 55 (2014), no. 5, 807–816. MR 3289108, DOI https://doi.org/10.1134/s0037446614050036
- Ryosuke Yamazaki, Some extensions of Oichi-Sato’s theorem for the Jørgensen numbers of the Kleinian groups, 2016, Master thesis, University of Tokyo.
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30F40, 57M50
Retrieve articles in all journals with MSC (2010): 30F40, 57M50
Additional Information
Yasushi Yamashita
Affiliation:
Nara Women’s University, Kitauoyanishi-machi, Nara-shi, Nara 630-8506, Japan
MR Author ID:
310816
Email:
yamasita@ics.nara-wu.ac.jp
Ryosuke Yamazaki
Affiliation:
Gakushuin Boys’ Senior High School, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-0031, Japan
Email:
rsk.yamazaki.ms@gmail.com
Keywords:
Jørgensen’s inequality,
Jørgensen number,
Kleinian groups
Received by editor(s):
August 21, 2017
Received by editor(s) in revised form:
April 15, 2018, and September 26, 2018
Published electronically:
February 25, 2019
Additional Notes:
This work was supported by JSPS KAKENHI Grant Number 26400088.
Article copyright:
© Copyright 2019
American Mathematical Society