Conformal tilings II: Local isomorphism, hierarchy, and conformal type
HTML articles powered by AMS MathViewer
- by Philip L. Bowers and Kenneth Stephenson PDF
- Conform. Geom. Dyn. 23 (2019), 52-104 Request permission
Abstract:
This is the second in a series of papers on conformal tilings. The overriding themes here are local isomorphisms, hierarchical structures, and the conformal “type” problem. Conformal tilings were introduced by the authors in 1997 with a conformally regular pentagonal tiling of the plane. This and even more intricate hierarchical patterns arise when tilings are repeatedly subdivided. Deploying a notion of expansion complexes, we build two-way infinite combinatorial hierarchies and then study the associated conformal tilings. For certain subdivision rules the combinatorial hierarchical properties are faithfully mirrored in their concrete conformal realizations. Examples illustrate the theory throughout the paper. In particular, we study parabolic conformal hierarchies that display periodicities realized by Möbius transformations, motivating higher level hierarchies that will emerge in the next paper of this series.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Jared E. Anderson and Ian F. Putnam, Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 509–537. MR 1631708, DOI 10.1017/S0143385798100457
- Michael Baake and Uwe Grimm, Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 149, Cambridge University Press, Cambridge, 2013. A mathematical invitation; With a foreword by Roger Penrose. MR 3136260, DOI 10.1017/CBO9781139025256
- Philip L. Bowers and Kenneth Stephenson, Conformal tilings III: Pushing the limits, in preparation.
- Philip L. Bowers and Kenneth Stephenson, A “regular” pentagonal tiling of the plane, Conformal Geometry and Dynamics 1 (1997), 58–86.
- Philip L. Bowers and Kenneth Stephenson, Uniformizing dessins and Belyĭ maps via circle packing, Mem. Amer. Math. Soc. 170 (2004), no. 805, xii+97. MR 2053391, DOI 10.1090/memo/0805
- Philip L. Bowers and Kenneth Stephenson, Conformal tilings I: foundations, theory, and practice, Conform. Geom. Dyn. 21 (2017), 1–63. MR 3594281, DOI 10.1090/ecgd/304
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI 10.1007/BF02398434
- J. W. Cannon, W. J. Floyd, R. Kenyon, and W. R. Parry, Constructing rational maps from subdivision rules, Conform. Geom. Dyn. 7 (2003), 76–102. MR 1992038, DOI 10.1090/S1088-4173-03-00082-1
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. I, Conform. Geom. Dyn. 10 (2006), 63–99. MR 2218641, DOI 10.1090/S1088-4173-06-00126-3
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. II, Conform. Geom. Dyn. 10 (2006), 326–354. MR 2268483, DOI 10.1090/S1088-4173-06-00127-5
- A. Fletcher and V. Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Mathematics, vol. 11, Oxford University Press, Oxford, 2007. MR 2269887
- Natalie Priebe Frank and Lorenzo Sadun, Fusion: a general framework for hierarchical tilings of $\Bbb {R}^d$, Geom. Dedicata 171 (2014), 149–186. MR 3226791, DOI 10.1007/s10711-013-9893-7
- Natalie Priebe Frank, A primer of substitution tilings of the Euclidean plane, Expo. Math. 26 (2008), no. 4, 295–326. MR 2462439, DOI 10.1016/j.exmath.2008.02.001
- Chaim Goodman-Strauss, Matching rules and substitution tilings, Ann. of Math. (2) 147 (1998), no. 1, 181–223. MR 1609510, DOI 10.2307/120988
- Richard Kenyon and Kenneth Stephenson, Shape convergence for aggregate tiles in conformal tilings, Proc. Amer. Math. Soc., to appear.
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Dane Mayhook, Conformal tilings & type, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–The Florida State University. MR 3597681
- Hervé Oyono-Oyono and Samuel Petite, $C^*$-algebras of Penrose hyperbolic tilings, J. Geom. Phys. 61 (2011), no. 2, 400–424. MR 2746126, DOI 10.1016/j.geomphys.2010.09.019
- Charles Radin, The pinwheel tilings of the plane, Ann. of Math. (2) 139 (1994), no. 3, 661–702. MR 1283873, DOI 10.2307/2118575
- Maria Ramirez-Solano, Non-communtative geometrical aspects and topological invariants of a conformally regular pentagonal tiling of the plane, Ph.D. thesis, Department of Mathematical Sciences, University of Copenhagen, 2013.
- Alain M. Robert, A course in $p$-adic analysis, Graduate Texts in Mathematics, vol. 198, Springer-Verlag, New York, 2000. MR 1760253, DOI 10.1007/978-1-4757-3254-2
- Lorenzo Sadun, Topology of tiling spaces, University Lecture Series, vol. 46, American Mathematical Society, Providence, RI, 2008. MR 2446623, DOI 10.1090/ulect/046
- Boris Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 695–738. MR 1452190, DOI 10.1017/S0143385797084988
- B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom. 20 (1998), no. 2, 265–279. MR 1637896, DOI 10.1007/PL00009386
Additional Information
- Philip L. Bowers
- Affiliation: Department of Mathematics, The Florida State University, Tallahassee, Florida 32306
- MR Author ID: 40455
- Email: bowers@math.fsu.edu
- Kenneth Stephenson
- Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996
- MR Author ID: 216579
- Email: kstephe2@utk.edu
- Received by editor(s): November 22, 2017
- Received by editor(s) in revised form: August 7, 2018
- Published electronically: April 26, 2019
- Additional Notes: The second author gratefully acknowledges support of a Simons Foundation Collaboration Grant
- © Copyright 2019 American Mathematical Society
- Journal: Conform. Geom. Dyn. 23 (2019), 52-104
- MSC (2010): Primary 52C23, 52C26; Secondary 52C45, 68U05
- DOI: https://doi.org/10.1090/ecgd/333
- MathSciNet review: 3943256