Almost Kenmotsu metric as a conformal Ricci soliton
HTML articles powered by AMS MathViewer
- by Dibakar Dey and Pradip Majhi PDF
- Conform. Geom. Dyn. 23 (2019), 105-116 Request permission
Abstract:
In the present paper, we characterize $(k,\mu )’$ and generalized $(k,\mu )’$-almost Kenmotsu manifolds admitting the conformal Ricci soliton. It is also shown that a $(k,\mu )’$-almost Kenmotsu manifold $M^{2n+1}$ does not admit conformal gradient Ricci soliton $(g,V,\lambda )$ with $V$ collinear with the characteristic vector field $\xi$. Finally an illustrative example is presented.References
- Nirabhra Basu and Arindam Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4 (2015), no. 1, 15–21. MR 3343178
- David E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976. MR 0467588, DOI 10.1007/BFb0079307
- David E. Blair, Riemannian geometry of contact and symplectic manifolds, 2nd ed., Progress in Mathematics, vol. 203, Birkhäuser Boston, Ltd., Boston, MA, 2010. MR 2682326, DOI 10.1007/978-0-8176-4959-3
- Giulia Dileo and Anna Maria Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009), no. 1-2, 46–61. MR 2501208, DOI 10.1007/s00022-009-1974-2
- Giulia Dileo and Anna Maria Pastore, Almost Kenmotsu manifolds with a condition of $\eta$-parallelism, Differential Geom. Appl. 27 (2009), no. 5, 671–679. MR 2567845, DOI 10.1016/j.difgeo.2009.03.007
- Giulia Dileo and Anna Maria Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 2, 343–354. MR 2341570
- Tamalika Dutta, Nirabhra Basu, and Arindam Bhattacharyya, Conformal Ricci soliton in Lorentzian $\alpha$-Sasakian manifolds, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 55 (2016), no. 2, 57–70. MR 3843616
- Arthur E. Fischer, An introduction to conformal Ricci flow, Classical Quantum Gravity 21 (2004), no. 3, S171–S218. A spacetime safari: essays in honour of Vincent Moncrief. MR 2053005, DOI 10.1088/0264-9381/21/3/011
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Richard S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237–262. MR 954419, DOI 10.1090/conm/071/954419
- Katsuei Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93–103. MR 319102, DOI 10.2748/tmj/1178241594
- H. G. Nagaraja and K. Venu, $f$-Kenmotsu metric as conformal Ricci soliton, An. Univ. Vest Timiş. Ser. Mat.-Inform. 55 (2017), no. 1, 119–127. MR 3694360, DOI 10.1515/awutm-2017-0009
- Anna Maria Pastore and Vincenzo Saltarelli, Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. J. Geom. 4 (2011), no. 2, 168–183. MR 2929587, DOI 10.4310/sii.2011.v4.n2.a13
- Peter Topping, Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, vol. 325, Cambridge University Press, Cambridge, 2006. MR 2265040, DOI 10.1017/CBO9780511721465
- Yaning Wang and Ximin Liu, On $\phi$-recurrent almost Kenmotsu manifolds, Kuwait J. Sci. 42 (2015), no. 1, 65–77 (English, with English and Arabic summaries). MR 3331380
- Yaning Wang and Ximin Liu, Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math. 112 (2014), no. 1, 37–46. MR 3244913, DOI 10.4064/ap112-1-3
- Yaning Wang and Ximin Liu, Ricci solitons on three-dimensional $\eta$-Einstein almost Kenmotsu manifolds, Taiwanese J. Math. 19 (2015), no. 1, 91–100. MR 3313406, DOI 10.11650/tjm.19.2015.4094
- Yaning Wang, Conformally flat almost Kenmotsu 3-manifolds, Mediterr. J. Math. 14 (2017), no. 5, Paper No. 186, 16. MR 3685964, DOI 10.1007/s00009-017-0984-9
- Kentaro Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970. MR 0284950
Additional Information
- Dibakar Dey
- Affiliation: Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
- MR Author ID: 1289358
- Email: deydibakar3@gmail.com
- Pradip Majhi
- Affiliation: Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
- MR Author ID: 1008097
- Email: mpradipmajhi@gmail.com
- Received by editor(s): July 19, 2018
- Published electronically: June 21, 2019
- Additional Notes: The first author was supported by the Council of Scientific and Industrial Research, India (File no: 09/028(1010)/2017-EMR-1) in the form of Junior Research Fellowship.
- © Copyright 2019 American Mathematical Society
- Journal: Conform. Geom. Dyn. 23 (2019), 105-116
- MSC (2010): Primary 53D15; Secondary 53A30, 53C25
- DOI: https://doi.org/10.1090/ecgd/335
- MathSciNet review: 3968810