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THE QUASICONFORMAL EQUIVALENCE OF RIEMANN

SURFACES AND THE UNIVERSAL SCHOTTKY SPACE

HIROSHIGE SHIGA

Abstract. In the theory of Teichmüller space of Riemann surfaces, we con-
sider the set of Riemann surfaces which are quasiconformally equivalent. For
topologically finite Riemann surfaces, it is quite easy to examine if they are
quasiconformally equivalent or not. On the other hand, for Riemann surfaces
of topologically infinite-type, the situation is rather complicated.

In this paper, after constructing an example which shows the complexity
of the problem, we give some geometric conditions for Riemann surfaces to be
quasiconformally equivalent.

Our argument enables us to obtain a universal property of the deformation
spaces of Schottky regions, which is analogous to the fact that the universal
Teichmüller space contains all Teichmüller spaces.

1. Introduction

In the theory of Teichmüller space of Riemann surfaces, we consider the set
of Riemann surfaces which are quasiconformally equivalent. Here, we say that
two Riemann surfaces are quasiconformally equivalent if there is a quasiconformal
homeomorphism between them. Hence, at the first stage of the theory, we have to
know a condition for Riemann surfaces to be quasiconformally equivalent.

The condition is quite obvious if the Riemann surfaces are topologically finite.
Indeed, the genus, the number of punctures, and the number of borders of surfaces
completely determine the quasiconformal equivalence. On the other hand, for Rie-
mann surfaces of topologically infinite-type, the situation is rather difficult. For
example, viewing Royden algebras of open Riemann surfaces, Nakai ([10]; see also
[11]) obtains an algebraic criterion for the equivalence. He shows that two Riemann
surfaces are quasiconformally equivalent if and only if the Royden algebras of those
Riemann surfaces are isomorphic. However, it is hard to examine the condition
in general since the Royden algebras are huge function spaces. In this paper, we
consider geometric conditions for the quasiconformal equivalence of open Riemann
surfaces.

First, we give examples of Riemann surfaces in order to show the difficulty of
the problem. We say that two homeomorphic Riemann surfaces R1 and R2 are
quasiconformally equivalent near the ideal boundary if they are quasiconformally
equivalent outside of compact subsets of those surfaces. At first glance, it seems
to be true that if two Riemann surfaces are quasiconformally equivalent near the
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ideal boundary, then they are quasiconformally equivalent. However, it is not true.
We may construct a counterexample in §3. Namely, we construct two homeomor-
phic Riemann surfaces R1, R2 and compact subsets Ki of Ri (i = 1, 2) such that
R1 \K1 and R2 \K2 are conformally equivalent but R1 and R2 are not quasicon-
formally equivalent. This example shows that the quasiconformal equivalence is
not a boundary property. In the second example, we show that domains given by
Schottky groups are not quasiconformally equivalent to domains given by boundary
groups of Schottky spaces.

To give conditions for open Riemann surfaces to be quasiconfomally equivalent,
we show a gluing lemma for quasiconformal mappings on Riemann surfaces (Lemma
4.1). By using the gluing lemma, we shall give a condition under which Riemann
surfaces are quasiconformally equivalent. MacManus [9] obtains similar results
from a different point of view, that is, a viewpoint of uniform domains, while we
are considering the problems from the theory of Riemann surfaces of infinite-type.

In §6, we will discuss a universality of Schottky regions which are complements
of the limit sets of Schottky groups. In fact, we show that Schottky regions are qua-
siconformally equivalent to each other (Theorem 6.2). The result makes a striking
contrast to the second example in §3.

At the end, we present the universal Schottky space which includes all Schottky
spaces.

2. Preliminaries

In this section, we give definitions, terminology, and known facts used in the
later sections.

Let R be an open Riemann surface. A sequence {Wn}∞n=1 of subdomains of R
is called a regular exhaustion of R if it satisfies the following conditions:

(1) Each Wn is a relatively compact domain in R bounded by a finite number
of mutually disjoint smooth simple closed curves in R.

(2) Every connected component of the complement of Wn (n ∈ N) is not com-
pact in R.

(3) W1 ⊂ W2 ⊂ · · · ⊂ Wn ⊂ Wn+1 ⊂ . . . and R =
⋃∞

n=1 Wn.

It is known that any open Riemann surface has a regular exhaustion (cf. [2]).
A Riemann surface which is homeomorphic to a triply connected planar domain

is called a pair of pants. If a Riemann surface is decomposed into pairs of pants
{Pn}, then we say that the Riemann surface admits a pants decomposition {Pn}.

The Douady-Earle extension.
Let φ be an orientation preserving homeomorphism from R to itself. The map-

ping φ is called quasisymmetric if there exists a constant M > 0 such that

M−1 ≤ φ(x)− φ(x− t)

φ(x+ t)− φ(x)
≤ M

holds for any x ∈ R and t > 0.
It is known that (cf. [1]) if φ : R → R is quasisymmetric, then it has a quasicon-

formal extension to the upper halfplane H. Namely, there exists a quasiconformal
mapping f : H → H whose boundary value on R is φ.

In the famous paper by Douady and Earle [5], they show that every homeomor-
phism from R to itself admits a so-called conformal natural extension to H, which is
called the Douady-Earle extension. We denote the Douady-Earle extension of φ by
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E(φ). The Douady-Earle extension E(φ) is a homeomorphism on H with boundary
value φ and it is conformal natural, that is, for any γ1, γ2 ∈ PSL(2,R),

γ1 ◦ E(φ) ◦ γ2 = E(γ1 ◦ φ ◦ γ2)

holds. Moreover, E(φ) is real analytic in H and if φ is quasisymmetric, then E(φ)
is quasiconformal in H.

Teichmüller space and Schottky space.
Let R be a hyperbolic Riemann surface and let ΓR be a Fuchsian group acting

on H which represents R. A quasiconformal mapping f : Ĉ → Ĉ is called a
quasiconformal deformation of ΓR if it is conformal on the lower halfplane L and
f ◦ΓR ◦ f−1 ⊂ PSL(2,C). We say that two quasiconformal deformations f, g of ΓR

are equivalent if there exists a Möbius transformation A such that g = A ◦ f . The
Teichmüller space T (ΓR) of the Fuchsian group ΓR is the set of equivalence classes
of quasiconformal deformations of ΓR.

Let Belt(ΓR;H) be the set of bounded measurable functions μ on C with ‖μ‖∞ <
1 satisfying

μ(γ(z))γ′(z)γ′(z)−1 = μ(z) (a.e. in H)

for any γ ∈ ΓR and μ(z) = 0 for any z ∈ L. Belt(ΓR;H) is a complex Banach space
by the usual way.

For each μ ∈ Belt(ΓR;H), there exists a quasiconformal deformation wμ : Ĉ → Ĉ

of ΓR with
∂wμ(z)

∂z
= μ(z)

∂wμ(z)

∂z
, a.e.

Hence, we have a projection πT : Belt(ΓR;H) → T (ΓR) by sending μ ∈ Belt(ΓR;H)
to the equivalence class of wμ. It is known that the Teichmüller space T (ΓR)
admits a complex structure so that the projection πT is holomorphic. It is also
known that the complex structures of T (ΓR) and T (ΓR′) are the same if R and
R′ are quasiconformally equivalent.

If the Riemann surface R is the upper halfplane H, then the group ΓR is the
trivial group {id}. We denote by T the Teichmüller space T ({id}) and we call
it the universal Teichmüller space. For any hyperbolic Riemann surface R, there
exists a natural holomorphic embedding

(2.1) ιR : T (ΓR) ↪→ T .

For more details on Teichmüller spaces, see [6] and [7].
Schottky space is defined in a similar way to Teichmüller space. Let Gg be a

Schottky group of genus g > 1. A quasiconformal mapping f : Ĉ → Ĉ is called
a quasiconformal deformation of Gg if f ◦ Gg ◦ f−1 ⊂ PSL(2,C). We say that
two quasiconformal deformations f, g of Gg are equivalent if there exists a Möbius
transformation A such that g is homotopic to A ◦ f rel Λ(Gg). The Schottky space
Sg of genus g is the set of equivalence classes of quasiconformal deformations of
Gg.

Let Belt(Gg;C) be the set of bounded measurable functions μ on C with ‖μ‖∞ <
1 satisfying

μ(γ(z))γ′(z)γ′(z)−1 = μ(z), a.e.

for any γ ∈ Gg. By the same way as in Teichmüller spaces, we have a projection
πS : Belt(Sg;C) → Sg and the Schottky space Sg admits a complex structure so
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Figure 1

that the projection πS is holomorphic. It is known that the complex structure of
Sg depends only on the genus g.

Remark 2.1. The Schottky space defined above is called the strong deformation
space of Gg in [8], in which the complex structure of the space is discussed.

Teichmüller space of a closed set.

Let E be a closed set in Ĉ. We denote by Belt(C) = Belt({id};C) the set of
bounded measurable functions μ on C with ‖μ‖∞ < 1. Two functions μ1, μ2 are
said to be equivalent if there exists a Möbius transformation A such that A ◦ wμ1

is homotopic to wμ2
rel E. We define Teichmüller space of E, which is denoted by

T (E), by the set of equivalence classes.

3. Examples of Riemann surfaces on quasiconformal non-equivalence

In this section, we construct two examples of pairs of Riemann surfaces which are
not quasiconformally equivalent. In the first example, we construct two Riemann
surfaces R1 and R2 which are quasiconformally equivalent near the ideal boundary
but not quasiconformally equivalent. The second one is an example of Riemann
surfaces defined by Cantor sets. The example has its own interest and is also related
to the result in Theorem 6.2 in §6.

Example 3.1. Put an = (n!)−1 and take pairs of pants Pn bounded by three
hyperbolic closed geodesics whose lengths are 1, 1 and an (n = 0, 1, 2, . . . ). We
glue Pn and Pn+1 along two boundary curves with length 1 to make a Riemann
surface Tn of genus 1 with two boundary curves of lengths an and an+1. Since
Tn and Tn+1 have a boundary curve of the length an+1, we may glue them along
the boundary curves. By repeating this operation for n = 0, 1, 2, . . . , we get a
Riemann surface R′

1 =
⋃∞

n=0 Tn which is a Riemann surface of infinite genus with
a geodesic boundary curve of length 1. We take a Riemann surface S of genus 1
with a geodesic boundary curve of length 1 by gluing two boundary curves of P0.
Gluing R′

1 and S along the boundary curves, we have an open Riemann surface R1

of infinite genus.
Next, we make a Riemann surface R′

2 in the same way as R′
1 but we do it from

n = 1 instead of n = 0 for R′
1. Then, R

′
2 is still a Riemann surface of infinite genus

with a geodesic boundary of length 1. Hence, since we can glue R′
2 and S along the

boundary curves, we have an open Riemann surface R2 of infinite genus (Figure 1).
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Obviously, both R1 and R2 are homeomorphic and they have the same subsurface⋃∞
n=1 Tn. Hence, R1 \K1 and R2 \K2 are conformally equivalent for K1 = S ∪ T0

and K2 = S. In particular, they are quasiconformally equivalent near the ideal
boundary. However, we may show that there are no quasiconformal mappings
between R1 and R2.

Suppose that there exists a K-quasiconformal mapping F : R1 → R2 for some
K ≥ 1. We take a sufficiently large N ∈ N with N > K. We consider the closed
geodesic αN of ∂TN ⊂ R1 with length aN and the geodesic [F (αN )] homotopic
to F (αN ) in R2. It follows from Wolpert’s formula ([14],[15]) that the hyperbolic
length 	([F (αN )]) of [F (αN )] in R2 satisfies an inequality,

K−1aN ≤ 	([F (αN )]) ≤ KaN .

Hence, we have

(3.1) aN+1 =
1

(N + 1)!
< N−1aN ≤ 	([F (αN )]) ≤ NaN <

N

N !
= aN−1.

If the geodesic [F (αN )] transversely intersects with some αi in R2, then it follows
from the collar theorem (cf. [3]) that the length 	([F (αN )]) is large enough. If
[F (αN )]∩αi = ∅ for any i ∈ N, from the geometry of S and Tn (n ∈ N) we see that
	([F (αN )]) is larger than aN for a sufficiently large N .

Hence, we conclude that only the closed geodesic of TN ∩ TN+1 of length an in

R2 has the length satisfying (3.1). Therefore, the subsurface S ∪
⋃N−1

n=0 Tn of R1

which is of genus N + 1 has to be mapped a subsurface of R2 of genus N . It is
absurd because F is a homeomorphism. Thus, we have a contradiction.

Example 3.2. Let G be a Schottky group of genus g > 1. The group is constructed
from 2g (topological) closed disks D1, D2, . . . , D2g with Di ∩ Dj = ∅ (i �= j) and
γi ∈ PSL(2,C) (i = 1, 2, . . . , g) which map the outside of D2i−1 onto the inside
of D2i. The group G is a Kleinian group generated by γ1, γ2. . . . , γg and it is a
purely loxodromic free group of rank g. The region of discontinuity Ω(G) of G is a

connected domain in Ĉ and the complement Λ(G), the limit set of G, is a Cantor
set. Thus, Ω(G) is an open Riemann surface of infinite-type.

Now, we consider a Kleinian group G′ of Schottky-type with cusps. We construct
the group G′ as follows.

Take 2g closed disks D′
1, D

′
2, . . . , D

′
2g such as D′

i∩D′
j = ∅ for 1 ≤ i < j ≤ 2g−1,

D′
i∩D′

2g = ∅ for 1 ≤ i ≤ 2g−2 but D′
2g is tangential to D′

2g−1 at one point z0. We
also take δi ∈ PSL(2,C) (i = 1, 2, . . . , g − 1) which map the outside of D′

2i−1 onto
the inside of D′

2i, and δg ∈ PSL(2,C) which maps the outside of D′
2g−1 onto the

inside of D′
2g fixing z0. Hence, δg is a parabolic transformation with the fixed point

z0. The group G′ is generated by δ1, δ2, . . . , δg. The group G′ is still a Kleinian
group and a free group of rank g, but it contains parabolic elements δg.

We may take a sequence {Gn}∞n=1 of Schottky groups of genus g such that it
converges to G′. Hence, the group G′ is regarded as a group on the boundary of
Schottky space.

The limit set Λ(G′) of G′ is also a Cantor set and the region of discontinuity
Ω(G′) is an open Riemann surface of infinite-type.

Thus, we have two open Riemann surfaces Ω(G) and Ω(G′) of infinite-type both
of which are complements of some Cantor sets. Then, we insist on the following.

Claim. Ω(G) and Ω(G′) are not quasiconformally equivalent.
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Since both G and G′ are quasiconformal deformations of Fuchsian groups, we
may assume that G and G′ are Fuchsian groups, so that Λ(G),Λ(G′) ⊂ R. Suppose
that there exists a quasiconformal mapping f from Ω(G) onto Ω(G′). Then we have
the following ([13, Theorem 1. 2 and Corollary 1. 3]):

(1) The mapping f is extended to a quasiconformal mapping from Ĉ onto itself.
We use the same letter f for the extended mapping.

(2) The mapping f is extended to a homeomorphism of the Martin compacti-
fications. We denote the extended homeomorphism by f∗ (for the Martin
compactification, see [4]).

Let p ∈ Λ(G′) be a parabolic fixed point. From (1) above, there exists a point
q ∈ Λ(G) such that f(q) = p. Moreover, it follows from (2) that there exists a
unique limit of f∗(z) as z → q in the Martin compactification of Ω(G). On the
other hand, in the Martin compactification of Ω(G′), there are more than two points
over a parabolic fixed point ([13, Theorem 1. 1 (A)]; see also [12]). Therefore, we
may find a non-convergent sequence {f∗(zn)}∞n=1 as zn → q. Thus, we have a
contradiction.

4. A gluing lemma

In this section, we shall prove the following lemma.

Lemma 4.1. Let X,Y be Riemann surfaces. We consider simple closed curves
α ⊂ X and β ⊂ Y with X \ α = X1 
 X2 and Y \ β = Y1 
 Y2, respectively.
Suppose that there exist quasiconformal mappings fi : Xi → Yi (i = 1, 2) such that
f1(α) = f2(α) = β. Then, there exists a quasiconformal mapping f : X → Y .
Moreover, the maximal dilatation of f depends only on those of f1, f2 and the local
behavior of those mappings near α.

Remark 4.1. Since α is a simple closed curve, the quasiconformal mappings f1 and
f2 are extended homeomorphically to α. We use the fact in the statement of the
above lemma.

Remark 4.2. If we suppose that α is piecewise smooth and f1, f2 agree on α, then
the conclusion is easy. But we do not assume them in this lemma.

Proof. We take simple closed curves αi ⊂ Xi (i = 1, 2) near α so that α and αi

bound annuli Ai ⊂ Xj . We put Bi = fi(Ai) and βi = fi(αi). Then, Bi are also
annuli, which are bounded by β and βi (i = 1, 2). First of all, we show that f1 and
f2 can be real analytic on α1 and α2, respectively.

There exist ri, ki > 1 such that each Ai is conformally equivalent to a circular
annulus

Ai := {z ∈ C | 1 < |z| < ri} � H/〈z �→ kiz〉
via a conformal mapping ϕi : Ai → Ai (i = 1, 2). We also take ρi, κi > 1 so that
each Bi is conformally equivalent to a circular annulus

Bi = {z ∈ C | 1 < |z| < ρi} � H/〈z �→ κiz〉}
via ψi : Bi → Bi.

Then, φi := ψ−1
i ◦fi|Ai

◦ϕi from Ai onto Bi are lifted to quasiconformal mappings

φ̂i : H → H with

φ̂i(kiz) = κiφ̂i(z)
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for any z ∈ H. In particular,

(4.1) φ̂i(kix) = κiφ̂i(x)

holds for any x ∈ R.

We take the Douady-Earle extension Φ̂i of φ̂i|R. Since φ̂i satisfy (4.1) on R, Φ̂i

also satisfy the equations on H. Moreover, they are real analytic in H. Therefore,

the quasiconformal mappings Φ̂i : H → H are projected quasiconformal mappings
Φi : Ai → Bi. Hence, Fi := ψi ◦Φi ◦ϕ−1

i : Ai → Bi are real analytic quasiconformal
mappings with the same boundary values as fi|Ai

(i = 1, 2).

We define quasiconformal mappings f̃i from Xi onto Yi by fi on Xi \Ai and Fi

on Ai ∪ {αi}. They are real analytic in Ai. Let α̃i be non-trivial smooth Jordan

curves in Ai. Then, f̃i are real analytic on α̃i. Thus, by considering f̃i and α̃i

instead of fi and αi, respectively, we may assume that fi are real analytic on αi.
Now, we consider an annulus A in X bounded by α1 and α2. We also consider

an annulus B in Y bounded by β1 := f1(α) and β2 := f2(α). We take r, k > 1 so
that A is conformally equivalent to the circular annulus

A := {z ∈ C | 1 < |z| < r} � H/〈z �→ kz〉

via a conformal mapping hA : A → A. We also take ρ, κ > 1 so thatB is conformally
equivalent to the circular annulus

B := {z ∈ C | 1 < |z| < ρ} � H/〈z �→ kz〉

via a conformal mapping hB : B → B.
We denote by πA : H\{0,∞} → A � H\{0,∞}/〈z �→ kz〉 and πB : H\{0,∞} →

B � H \ {0,∞}/〈z �→ κz〉, the quotient mappings for A and B, respectively. We
may assume that πA(R<0) = α1, πA(R>0) = α2, πB(R<0) = β1 and πB(R>0) = β2.
Then, the smooth homeomorphism f1|α1

: α1 → β1 is lifted to a smooth home-
omorphism from R<0 to itself and f2|α2

: α2 → β2 is also lifted to a smooth
homeomorphism from R>0 to itself. Thus, we have a strictly increasing homeomor-
phism Ψ on R onto itself which is smooth in R \ {0} with Ψ(0) = 0. The mapping
Ψ satisfies

(4.2) Ψ(kx) = κΨ(x)

for any x ∈ R.
We may normalize the function as Ψ(1) = 1 and Ψ(−1) = −1. We show that Ψ

is quasisymmetric on R.
We put

M = sup
x>0,t>0

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)

and

m = inf
x>0.t>0

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
.

We show that 0 < m ≤ M < ∞ in several steps.
If x = ky and t = ks (s > 1), then we have from (4.2)

Ψ(x)−Ψ(x− t) = Ψ(ky)−Ψ(k(y − s)) = κ(Ψ(y)−Ψ(y − s)),

Ψ(x+ t)−Ψ(x) = κ(Ψ(y + s)−Ψ(y)).
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Thus, we see

(4.3) M = sup
x∈{0}∪[1,k],t>0

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)

and

(4.4) m = inf
x∈{0}∪[1,k],t>0

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
.

(i) If x ∈ [1, k] and 0 < t ≤ 1
2 , then we have

Ψ(x)−Ψ(x− t) = Ψ′(x− θt)t

and

Ψ(x+ t)−Ψ(x) = Ψ′(x+ θ′t)t

for some θ, θ′ ∈ (0, 1). Thus,

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
=

Ψ′(x− θt)

Ψ′(x+ θ′t)
.

Since x ∈ [1, k],
1

2
≤ x− θt < x+ θ′t ≤ k +

1

2
.

We conclude that there exist 0 < m1 < M1 < ∞ such that

(4.5) m1 ≤ Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
≤ M1

for any x ∈ [1, k] and t ∈ (0, 12 ].

(ii) If 1
2 < t < x, we have

Ψ(x)−Ψ(x− t) ≤ Ψ(x) ≤ Ψ(k) = κ

and

Ψ(x+ t)−Ψ(x) ≥ Ψ

(
x+

1

2

)
−Ψ(x).

For m̃2 = inf1≤x≤k

{
Ψ
(
x+ 1

2

)
−Ψ(x)

}
> 0, we get

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
≤ κ

m̃2
< ∞.

Also, we have

Ψ(x)−Ψ(x− t) ≥ Ψ(x)−Ψ

(
x− 1

2

)
and

Ψ(x+ t)−Ψ(x) ≤ Ψ(x+ t) ≤ Ψ(2x) ≤ Ψ(2k) = κΨ(2).

For m̂2 = inf1≤x≤k

{
Ψ(x)−Ψ

(
x− 1

2

)}
> 0, we get

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
≥ m̂2

κΨ(2)
> 0.

(iii) If x ∈ [1, k] and t ≥ 1
2 , then we put

M3 = sup
1≤x≤k,t≥ 1

2

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
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and

m3 = inf
1≤x≤k,t≥ 1

2

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
.

We take sequences {xn}, {tn} so that xn ∈ [1, k], tn ≥ 1
2 and

lim
n→∞

Ψ(xn)−Ψ(xn − tn)

Ψ(xn + tn)−Ψ(xn)
= M3.

If {tn} is bounded, it is obvious that M3 < ∞. We suppose that {tn} is unbounded.
Since xn ∈ [1, k], we have

xn − tn ∈ [1− tn, k − tn], xn + tn ∈ [1 + tn, k + tn].

Hence, we have

Ψ(xn)−Ψ(xn − tn) ≤ Ψ(k)−Ψ(1− tn) = κ−Ψ(1− tn)

and
Ψ(xn + tn)−Ψ(xn) ≥ Ψ(1 + tn)−Ψ(k) = Ψ(1 + tn)− κ.

We take m(n) ∈ N such that

km(n) ≤ tn ≤ km(n)+1.

Note that m(n) → ∞ as n → ∞. Then

Ψ(1− tn) ≥ Ψ(−tn) ≥ Ψ(−km(n)+1) = κm(n)+1Ψ(−1) = −κm(n)+1

and
Ψ(1 + tn) ≥ Ψ(km(n)) = κm(n).

Thus, we have
Ψ(xn)−Ψ(xn − tn)

Ψ(xn + tn)−Ψ(xn)
≤ 1 + κm(n)

κm(n)−1 − 1

and we get
M3 ≤ κ

as m(n) → ∞. A similar argument shows that m3 > 0.
Thus, we conclude that 0 < m < M < ∞. By using the same argument as

above, we can show that

0 < inf
x<0,0<t

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
≤ sup

x<0,0<t

Ψ(x)−Ψ(x− t)

Ψ(x+ t)−Ψ(x)
< ∞.

(iv) If x = 0, we have

κn−1 ≤ Ψ(t) ≤ κn

−κn = κnΨ(−1) ≤ Ψ(−t) ≤ κn−1Ψ(−1) = −κn−1

if kn−1 ≤ t ≤ kn (n ∈ N). Hence,

κ−1 ≤ Ψ(0)−Ψ(−t)

Ψ(t)−Ψ(0)
≤ κ.

The same argument gives us the same estimate for κ−n ≤ t ≤ κ−n+1 (n ∈ N).
It follows from (i) – (iv) that Ψ is quasisymmetric on R.
Now, we take the Douday-Earle extension E(Ψ) of Ψ. It is a quasiconformal

self-mapping of H because of the quasisymmetricity of Ψ. Since Ψ satisfies (4.2),
the equation

E(Ψ)(kz) = κE(Ψ)(z)
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P1 P2 P3 P4 P5 P6

E

Figure 2

also holds for any z ∈ H. Therefore, E(Ψ) is projected to a quasiconformal mapping
ψ from A to B. Moreover, we have ψ|α1

= f1|α1
, ψ|α2

= f2|α2
. We define a map

f : X → Y by

f(p) =

{
fi(p), (p ∈ Xi \A; i = 1, 2),

ψ(p), (p ∈ A).

The map f is a homeomorphism and quasiconformal except on α1 ∪ α2. It follows
from the removability for quasiconformal mapping that f is quasiconformal on X.
Moreover, from the construction we see that the maximal dilatation of f depends
only on those of fi and the local behavior of them near α. �

5. Conditions for the quasiconformal equivalence

of Riemann surfaces

Let R1, R2 be open Riemann surfaces which are homeomorphic to each other.
Suppose that R1 and R2 are quasiconformally equivalent near the ideal boundaries,
namely, there exist compact subsets Kj of Rj (j = 1, 2) and a quasiconformal map-
ping such that f(R1 \K1) = R2 \K2. As we have seen in the previous section, the
quasiconformal equivalence near the ideal boundaries does not imply the quasicon-
formal equivalence of the surfaces in general. In this section, we will give sufficient
conditions for two open Riemann surfaces which are quasiconformally equivalent
near the ideal boundaries to be quasiconformally equivalent.

We say that an open Riemann surface R admits a bounded pants decomposition
if there exists a pants decomposition {Pn}∞n=1 of R such that each Pn is bounded
by hyperbolic closed geodesics and the lengths of the geodesics are in [M−1,M ],
where M > 0 is a constant independent of n.

Definition 5.1. Let E be an end of an open Riemann surface R. We say that E
is an infinite ladder end (ILE) if E is an end of infinite genus having a bounded
pants decomposition {Pn}∞n=1 given by the dotted lines as in Figure 2.

Theorem 5.1. Let R1, R2 be homeomorphic open Riemann surfaces which are
quasiconformally equivalent near the ideal boundaries.

(1) If the genus of R1 is finite, then R1 and R2 are quasiconformal equivalent.
(2) If R1 has an ILE, then R1 and R2 are quasiconformally equivalent.

Proof. From the assumption, there exist compact subsets Ki of Ri (i = 1, 2) and a
quasiconformal mapping f on R1 \K1 such that f(R1 \K1) = R2 \K2.
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(1) Let R1 =
⋃∞

n=1 Wn be a regular exhaustion of R1. Each Wn is a relatively
compact subregion of R1 bounded by a finite number of mutually disjoint simple
closed curves, and every connected component of the complement of Wn is not
relatively compact in R1. Hence, there exists N ∈ N such that K1 ⊂ WN and
the genus of WN is the same as that of R1. Also, the number of the connected
components of R1 \WN is not more than that of the boundary components of WN .
Thus, it has to be finite.

Let E1, . . . , Ek be the set of connected components of R1 \WN . Since WN is of
the same genus as R1, every Ej is a planar and so is f(Ej). Hence, we may take
a simple closed curve αj in Ej which separates the ideal boundary of Ej and the
relative boundaries of Ej . We see that there is a unique connected component of

R2 \
⋃k

j=1 f(αj) which is relatively compact in R2.
Indeed, if we have that there are two relatively compact connected components

in R2 \
⋃k

j=1 f(αj), then each of them together with its connected components of
the complement is a subdomain of R2 with no relative boundaries. It is absurd
because of the connectivity of R2. It has to be unique.

We denote by S2 the relatively compact connected component of R2\
⋃k

j=1 f(αj).

It is also seen that there is a unique connected component of R1 \
⋃k

j=1 αj . The
component is denoted by S1. Then, both S1 and S2 are open Riemann surfaces of
the same genus bounded by the same number of simple closed curves. Hence, they
are quasiconformally equivalent as well as their complements. Thus, we see from
Lemma 4.1 that R1 and R2 are quasiconformally equivalent.

(2) Let E ⊂ R1 be an ILE of R1 with a bounded pants decomposition {Pn}∞n=1

as Figure 2 shows. Every boundary curve of Pn (n ∈ N) is the hyperbolic geodesic
whose length is in [M−1,M ] for some M > 0 independent of n.

From the assumption, there exist a compact subset Ki of Ri (i = 1, 2) and a
quasiconformal mapping f : R1 \K1 → R2 \ K2. We may assume that K1 is the
closure of a regular region S1 of R1 and E is a connected component of R1 \ S1.
We put S2 = R2 \ f(R1 \ S1).

Since K1 = S1, the boundary ∂K1 = ∂S1 consists of finitely many Jordan
curves in R1. Hence, so is f(∂K1) = ∂S2. In particular, the number of boundary
components of S2 are the same as that of S1. If the genus of S2 is the same as
that of S1, then S1 and S2 are quasiconformally equivalent. Thus, it follows from
Lemma 4.1 that R1 and R2 are quasiconformally equivalent.

Suppose that the genus of S2 is greater than the genus of S1 and let m ∈ N be
the difference of them. For a bounded pants decomposition {Pn}∞n=1 of E as in
Figure 2, pairs of pants P1, . . . , P2m make a regular region Wm of genus m with
two boundary components. By gluing S1 and Wm, we get a regular region S′

1 of
the same genus as that of S2. We also see that S′

1 is bounded by the same number
of closed curves as S2. Therefore, S

′
1 and S2 are quasiconformally equivalent.

Now, we consider an end Em := E \
⋃2m

n=1 Pn. The end Em is still an ILE end
with a bounded pants decomposition {Pn}n≥m+1. On the other hand, the end E′ :=
f(E) is also an ILE and it admits a bounded pants decomposition {P ′

n}∞n=1 as Figure
2. It follows from Wolpert’s formula that the hyperbolic length of any boundary
curve of P ′

n is in [K(f)−1M−1,K(f)M ], where K(f) is the maximal dilatation of
f . Therefore, Pi and P ′

j are quasiconformally equivalent for any i ≥ m + 1 and
for any j ∈ N. We may also see that the maximal dilatations of quasiconformal
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mappings from Pi onto P ′
j (i ≥ m + 1, j ∈ N) can be uniformly bounded. From

Lemma 4.1 we see that Em and E′ are quasiconformally equivalent.
From the assumption, R1 \ (S′

1 ∪ Em) and R2 \ (S2 ∪ E′) are quasiconformally
equivalent. By using Lemma 4.1 again, we conclude that R1 and R2 are quasicon-
formally equivalent.

The same argument works for f−1 when the genus of S1 is greater than the genus
of S2. Thus, we complete the proof of the theorem. �

6. A universality of Schottky regions

and the universal Schottky space

Let Gg (g > 1) be a Schottky group of genus g. Then, the limit set Λ(Gg) of Gg

is a Cantor set in Ĉ. We call the complement Ω(Gg) of Λ(Gg), which is the region
of discontinuity of Gg, a Schottky region for genus g.

Let Ω(G′
g) be another Schottky region for the same genus g. Then the quotient

surfaces X := Ω(Gg)/Gg, X
′ := Ω(G′

g)/G
′
g are compact Riemann surfaces of genus

g. We see that there is a quasiconformal mapping from X onto X ′ and the mapping
is lifted to a group equivariant quasiconformal map from Ω(Gg) onto Ω(G′

g). There-
fore, Schottky regions Ω(Gg) and Ω(G′

g) for genus g are quasiconformal equivalent
as open Riemann surfaces of infinite-type. In fact, the quasiconformal mapping is

extended to a quasiconformal mapping on Ĉ.
We also see in Example 3.2 that for a Kleinian group G′ of Schottky-type with

cusps, Ω(Gg) and Ω(G′) are not quasiconformally equivalent while both are the
complements of some Cantor sets.

Now, we consider a Schottky group Gh of genus h �= g. Of course, there are no
group equivariant quasiconformal mappings between Ω(Gg) and Ω(Gh) since those
groups represent topologically different Riemann surfaces. However, it may be
possible that Ω(Gg) and Ω(Gh) are quasiconformally equivalent as open Riemann
surfaces. In fact, it is always possible. We may show the following.

Theorem 6.1. Schottky regions are quasiconformally equivalent to each other.
More precisely, for any Schottky groups G,G′ there exists a quasiconformal mapping

f on Ĉ such that f(Ω(G)) = Ω(G′).

As an immediate consequence, we have the following universality of Teichmüller
spaces of Schottky regions.

Corollary 6.1. For any g, h > 1, the Teichmüller space of a Schottky region of
genus g and the Teichmüller space of a Schottky region of genus h are the same.

Proof of Theorem 6.1. Let P be a pair of pants bounded by three hyperbolic geo-
desics α1, α2, α3 of length 1. We make infinite copies {Pn}n∈Z of P and construct
a Riemann surface X∞ as follows (see also Figure 3).

Let α1,n, α2,n, and α3,n be boundary curves of Pn corresponding to α1, α2, and
α3, respectively. First, we put X1 = P1, which is the surface of the 1st generation.
We glue P1 and P2 by identifying α2,1 and α1,2. We also glue P1 and P3 by
identifying α3,1 and α1,3. The resulting surface denoted by X2 is the surface of
the 2nd generation, which is bounded by 5 geodesics, α1,1, α2,2, α3,2, α2,3, and α3,3.
Inductively, we make Xk+1 from Xk (k ∈ N) by attaching copies of P along all
boundary curves of Xk except α1.1. Symmetrically, we make X−k for k ∈ N (see
Figure 3).
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Figure 3

We obtain the Riemann surfaceX∞ by identifying α1,1 ⊂ ∂
⋃

k∈N
Xk and α1,−1 ⊂

∂
⋃

k∈N
X−k. Then, both Xk and X−k are subsurfaces of X∞ bounded by 2k + 1

geodesics of length 1. Xk is made by P1, P2, . . . , P2k−1 and X−k is by P−1, . . . ,
P−2k+1.

Let G be a Schottky group of genus g > 1. We show that Ω(G) is quasiconfor-
mally equivalent to X∞.

From the definition of Schottky groups, there are mutually disjoint 2g Jordan

curves C1, C2, . . . , C2g in Ĉ such that the outside of them, which is denoted by Fg,
is a fundamental domain for G. The group G is a free group of rank g generated
by γ1, . . . , γg and each γj maps the inside of C2j−1 onto the outside of C2j (j =
1, . . . , g). Thus, Ω(G) is constructed from infinite copies of Fg by gluing their
boundary curves according to those correspondences (see Figure 4 for g = 3). The
correspondence gives a regular exhaustion of Ω(G)

Fg = W0 ⊂ W1 ⊂ · · · ⊂ Wn ⊂ Wn+1 ⊂ · · · ⊂ Ω(G).

The precise construction is the following.
We start at W0 := Fg. It is a region bounded by 2g simple closed curves

C1, C2, . . . , C2g. We put

W1 = Int

⎛⎝W0 ∪
g⋃

j=1

γ±1
j (Fg)

⎞⎠ .

W1 is a region bounded by 2g(2g − 1) simple closed curves.
Inductively, we make

Wn := Int

⎛⎝Wn−1 ∪
⋃

γ∈Sn

γ(Fg)

⎞⎠ ,

where Sn ⊂ G is the set of γ ∈ G whose word lengths with respect to γ±1
1 , . . . , γ±1

g

are precisely n. For each component c of ∂Wn−1, there exist a unique γ ∈ Sn and
a unique C ∈ {C1, . . . , C2g} such that c = γ(C). Thus, Wn is a region bounded
by 2g(2g− 1)n simple closed curves coming from C1, . . . , C2g. We also see that the

region Wn consists of N(g) := 1 +
∑n−1

k=0 2g(2g − 1)k copies of Fg.
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Figure 4

Next, we make a regular exhaustion of X∞ to give a quasiconformal mapping
from X∞ onto Ω(G).

Let k ∈ N ∪ {0} with 2k < 2g − 1 < 2k+1. In the above construction of X∞, we
consider a subsurface of X∞ made by P1, . . . , P2g−1 and denote it by Fg. We see
that Xk ⊂ Fg ⊂ Xk+1 and Fg is bounded by 2g closed geodesics. Since both Fg

and Fg are Riemann surfaces of genus 0 bounded by 2g simple closed curves, there
exists a quasiconformal mapping F from Fg onto Fg. The quasiconformal mapping
F yields a correspondence between the set of boundary curves of Fg and that of
Fg. We put Cj = F−1(Cj) (j = 1, . . . , 2g).

By using this correspondence between Cj and Cj together with the configuration
of {Wn}∞n=0 by copies of Fg, we construct a regular exhaustion of X∞,

Fg = W̃0 ⊂ W̃1 · · · ⊂ W̃n ⊂ W̃n+1 ⊂ · · · ⊂ X∞.

Because of those constructions of the exhaustions, the quasiconformal mapping

F : Fg → Fg gives a quasiconformal mapping F̃ from X∞ \
⋃

n∈N
∂W̃n onto

Ω(G) \
⋃

n∈N
∂Wn. Noting that there are finitely many boundary behaviors of F̃

near
⋃

n∈N
∂W̃n, we see from Lemma 4.1 that Ω(G) and X∞ are quasiconformally

equivalent.
Let G′ be another Schottky group. Using the same argument as above for G, we

may show that Ω(G′) is quasiconformally equivalent to X∞. Hence, we conclude
that Ω(G) and Ω(G′) are quasiconformally equivalent. As we have already noted
(cf. [13]), every quasiconformal mapping on Ω(G) is extended to a quasiconformal

mapping on Ĉ. Thus, we have a quasiconformal mapping f on Ĉ with f(Ω(G)) =
Ω(G′), as desired. �

The universal Schottky space.
Let C be the standard middle 1

3 -Cantor set for [−1, 1]. It is obtained by removing
the middle one thirds open intervals from [−1, 1] successively. Let us recall the
precise construction.

First, we remove an open interval J1 of length 2/3 from E0 := I = [−1, 1] so that
I \ J1 consists of two closed intervals I−1

1 , I11 of the same length, where I−1
1 ⊂ R<0

and I11 ⊂ R>0. We put E1 = I−1
1 ∪ I11 . We remove an open interval of length 1

3 |Ii1|
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from each I±1
1 so that the remainder E2 consists of four closed intervals of the same

length, where |J | is the length of an interval J . Inductively, we define Ek+1 from

Ek =
⋃−1

i=−2k−1 Iik ∪
⋃2k−1

i=1 Iik by removing an open interval of length 1
3 |Iik| from

each closed interval Iik of Ek so that Ek+1 consists of 2k+1 closed intervals of the
same length. The Cantor set C is defined by

C =

∞⋂
k=1

Ek.

We put X̂ := Ĉ \ C. We denote the Teichmüller space T (C) of C by S . Then,
we insist on the following.

Theorem 6.2. For any g > 1, there exists a holomorphic injection

(6.1) ιg : Sg ↪→ S

similar to (2.1).

Proof. We take a pants decomposition {Pn}n∈Z of the Riemann surface X̂ := Ĉ \C
as follows.

We denote the imaginary axis by C0
0 . For any (k, i) (k ∈ Z \ {0}; i = ±1, · · · ±

2k−1), we take a circle Ci−1
k which is a circle centered at the midpoint of Iik with

radius 5
6 |Iik|. We see that all Ci

k’s are mutually disjoint curves in X̂ and each

Ci
k contains C

ε(i)(2|i|−1)
k+1 , C2i

k+1, where ε(i) = −1 if i < 0 and ε(i) = 1 if i > 0.

Hence, they make a pants decomposition of X̂. A pair of pants bounded by C0
0 , C

1
1

(resp., C−1
1 ) and C2

1 (resp., C−2
1 ) is denoted by P1 (resp., P−1). We also denote by

Pε(i)(2k+(i−1)) a pair of pants bounded by Ci
k, C

ε(i)(2|i|−1)
k+1 and C2i

k+1. Obviously,
for every n with |n| ≥ 2, Pn is conformally equivalent to P2.

Because of the construction of {Pn}n∈Z, the configuration of the pants decompo-

sition {Pn}n∈Z of X̂ is exactly the same as that of the Riemann surface X∞ of the
proof of Theorem 6.1. It is also seen that each Pn is quasiconformally equivalent
to Pn. From Lemma 4.1, we see that the Riemann surface X∞ is quasiconformally

equivalent to X̂.
Let Gg be a Schottky group of genus g and let Ω(Gg) be the region of disconti-

nuity of Gg. From Theorem 6.1 and the above argument, we see that there exists

a quasiconformal mapping f : Ĉ → Ĉ with f(X̂) = Ω(Gg). For each quasicon-
formal deformation h of Gg, Hh := h ◦ f is a quasiconformal deformation of the

Riemann surface X̂. It is obvious that h1 and h2 are equivalent as quasiconformal
deformations of Gg if and only if Hh1

and Hh2
are equivalent as quasiconformal

deformations of X̂. Thus, we have a well-defined map ιg : Sg → S . The injectivity
of the map follows from the definitions of Sg and S .

The complex structure of Sg is defined by that of the space of Beltrami dif-
ferentials. It is the same for the complex structure of S . Hence, the map ιg is
holomorphic. �
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