Pluripotential theory on Teichmüller space I: Pluricomplex Green function
HTML articles powered by AMS MathViewer
- by Hideki Miyachi
- Conform. Geom. Dyn. 23 (2019), 221-250
- DOI: https://doi.org/10.1090/ecgd/340
- Published electronically: November 7, 2019
- PDF | Request permission
Abstract:
This is the first paper in a series of investigations of the pluripotential theory on Teichmüller space. One of the main purposes of this paper is to give an alternative approach to the Krushkal formula of the pluricomplex Green function on Teichmüller space. We also show that Teichmüller space carries a natural stratified structure of real-analytic submanifolds defined from the structure of singularities of the initial differentials of the Teichmüller mappings from a given point. We will also give a description of the Levi form of the pluricomplex Green function using the Thurston symplectic form via Dumas’ symplectic structure on the space of holomorphic quadratic differentials.References
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- Lipman Bers, Correction to “Spaces of Riemann surfaces as bounded domains”, Bull. Amer. Math. Soc. 67 (1961), 465–466. MR 130972, DOI 10.1090/S0002-9904-1961-10637-X
- Pierre Blanchet, On removable singularities of subharmonic and plurisubharmonic functions, Complex Variables Theory Appl. 26 (1995), no. 4, 311–322. MR 1315864, DOI 10.1080/17476939508814792
- Albert Boggess, CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. MR 1211412
- Francis Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 2, 233–297 (English, with English and French summaries). MR 1413855, DOI 10.5802/afst.829
- Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky, The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012), no. 1, 1–149. MR 2925381, DOI 10.4007/annals.2012.176.1.1
- Richard D. Canary, Introductory bumponomics: the topology of deformation spaces of hyperbolic 3-manifolds, Teichmüller theory and moduli problem, Ramanujan Math. Soc. Lect. Notes Ser., vol. 10, Ramanujan Math. Soc., Mysore, 2010, pp. 131–150. MR 2667553
- E. M. Chirka, On the removal of subharmonic singularities of plurisubharmonic functions, Proceedings of Conference on Complex Analysis (Bielsko-Biała, 2001), 2003, pp. 113–116. MR 1972852, DOI 10.4064/ap80-0-8
- Dan Coman, Boundary behavior of the pluricomplex Green function, Ark. Mat. 36 (1998), no. 2, 341–353. MR 1650450, DOI 10.1007/BF02384773
- Jean-Pierre Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519–564 (French). MR 881709, DOI 10.1007/BF01161920
- K. Diederich and G. Herbort, Quantitative estimates for the Green function and an application to the Bergman metric, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 4, 1205–1228 (English, with English and French summaries). MR 1799743, DOI 10.5802/aif.1790
- Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR 568308
- A. Douady and J. Hubbard, On the density of Strebel differentials, Invent. Math. 30 (1975), no. 2, 175–179. MR 396936, DOI 10.1007/BF01425507
- David Dumas, Skinning maps are finite-to-one, Acta Math. 215 (2015), no. 1, 55–126. MR 3413977, DOI 10.1007/s11511-015-0129-6
- Clifford J. Earle, The Teichmüller distance is differentiable, Duke Math. J. 44 (1977), no. 2, 389–397. MR 445013
- H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765, DOI 10.1007/978-1-4612-2034-3
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027
- Frederick P. Gardiner and Howard Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991), no. 2-3, 209–237. MR 1099913, DOI 10.1080/17476939108814480
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). MR 0102797
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Gregor Herbort, The pluricomplex Green function on some regular pseudoconvex domains, Ann. Polon. Math. 110 (2014), no. 3, 209–226. MR 3172935, DOI 10.4064/ap110-3-1
- Lester L. Helms, Potential theory, Universitext, Springer-Verlag London, Ltd., London, 2009. MR 2526019, DOI 10.1007/978-1-84882-319-8
- John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221–274. MR 523212, DOI 10.1007/BF02395062
- John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR 2245223
- Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
- Yujiro Kawamata, On deformations of compactifiable complex manifolds, Math. Ann. 235 (1978), no. 3, 247–265. MR 499279, DOI 10.1007/BF01420124
- Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), no. 1, 23–41. MR 559474, DOI 10.1016/0040-9383(80)90029-4
- M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), no. 2, 231–240 (English, with French summary). MR 820321, DOI 10.24033/bsmf.2029
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1969 original; A Wiley-Interscience Publication. MR 1393941
- Kunihiko Kodaira, Complex manifolds and deformation of complex structures, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 283, Springer-Verlag, New York, 1986. Translated from the Japanese by Kazuo Akao; With an appendix by Daisuke Fujiwara. MR 815922, DOI 10.1007/978-1-4613-8590-5
- Yohei Komori and Jouni Parkkonen, On the shape of Bers-Maskit slices, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 179–198. MR 2297885
- Irwin Kra, The Carathéodory metric on abelian Teichmüller disks, J. Analyse Math. 40 (1981), 129–143 (1982). MR 659787, DOI 10.1007/BF02790158
- S. L. Krushkal′, Strengthening pseudoconvexity of finite-dimensional Teichmüller spaces, Math. Ann. 290 (1991), no. 4, 681–687. MR 1119946, DOI 10.1007/BF01459267
- Samuel L. Krushkal, The Green function of Teichmüller spaces with applications, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 143–147. MR 1142683, DOI 10.1090/S0273-0979-1992-00294-X
- John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200. MR 644018, DOI 10.2307/1971341
- Howard Masur, Random walks on Teichmuller space and the mapping class group, J. Anal. Math. 67 (1995), 117–164. MR 1383491, DOI 10.1007/BF02787787
- Howard Masur, The Teichmüller flow is Hamiltonian, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3739–3747. MR 1283559, DOI 10.1090/S0002-9939-1995-1283559-2
- Howard Masur and John Smillie, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2) 134 (1991), no. 3, 455–543. MR 1135877, DOI 10.2307/2944356
- Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), no. 2, 559–626. MR 1689341, DOI 10.2307/120976
- Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), no. 1, 1–107. MR 2630036, DOI 10.4007/annals.2010.171.1
- Hideki Miyachi, Cusps in complex boundaries of one-dimensional Teichmüller space, Conform. Geom. Dyn. 7 (2003), 103–151. MR 2023050, DOI 10.1090/S1088-4173-03-00065-1
- Hideki Miyachi, Unification of extremal length geometry on Teichmüller space via intersection number, Math. Z. 278 (2014), no. 3-4, 1065–1095. MR 3278905, DOI 10.1007/s00209-014-1346-y
- Hideki Miyachi, Extremal length functions are log-plurisubharmonic, In the tradition of Ahlfors-Bers. VII, Contemp. Math., vol. 696, Amer. Math. Soc., Providence, RI, 2017, pp. 225–250. MR 3715450, DOI 10.1090/conm/696/14024
- Hideki Miyachi. Teichmüller theory, Thurston theory, Extremal length geometry and Complex analysis. submitted (2018).
- Hideki Miyachi, Pluripotential theory on Teichmüller space II – Poisson integral formula, eprint arXiv:1810.04343 (2018).
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291
- R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR 1144770, DOI 10.1515/9781400882458
- E. A. Poletskiĭ and B. V. Shabat, Invariant metrics, Current problems in mathematics. Fundamental directions, Vol. 9 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986, pp. 73–125, 292 (Russian). MR 860610
- Mary Rees, Teichmüller distance for analytically finite surfaces is $C^2$, Proc. London Math. Soc. (3) 85 (2002), no. 3, 686–716. MR 1936817, DOI 10.1112/S0024611502013746
- H. L. Royden, Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 369–383. MR 0288254
- M.-H. Schwartz, Lectures on stratification of complex analytic sets, Tata Institute of Fundamental Research Lectures on Mathematics, No. 38, Tata Institute of Fundamental Research, Bombay, 1966. MR 0214811
- Hiroshige Shiga, On analytic and geometric properties of Teichmüller spaces, J. Math. Kyoto Univ. 24 (1984), no. 3, 441–452. MR 766636, DOI 10.1215/kjm/1250521274
- Jean-Luc Stehlé, Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, C. R. Acad. Sci. Paris Sér. A 279 (1974), 235–238 (French). MR 374493
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- William A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2) 124 (1986), no. 3, 441–530. MR 866707, DOI 10.2307/2007091
- William A. Veech, Moduli spaces of quadratic differentials, J. Analyse Math. 55 (1990), 117–171. MR 1094714, DOI 10.1007/BF02789200
- Hassler Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496–549. MR 192520, DOI 10.2307/1970400
Bibliographic Information
- Hideki Miyachi
- Affiliation: Division of Mathematical and Physical Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- MR Author ID: 650573
- ORCID: 0000-0003-4318-9539
- Email: miyachi@se.kanazawa-u.ac.jp
- Received by editor(s): January 14, 2019
- Published electronically: November 7, 2019
- Additional Notes: This work was partially supported by JSPS KAKENHI Grant Numbers 16K05202, 16H03933, 17H02843
- © Copyright 2019 American Mathematical Society
- Journal: Conform. Geom. Dyn. 23 (2019), 221-250
- MSC (2010): Primary 30F60, 32G15, 57M50, 31B05, 32U05, 32U35
- DOI: https://doi.org/10.1090/ecgd/340
- MathSciNet review: 4028456