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ON HYPERBOLIC COBORDISMS AND HURWITZ CLASSES

OF HOLOMORPHIC COVERINGS

CARLOS CABRERA, PETER MAKIENKO, AND GUILLERMO SIENRA

Abstract. In this article we show that for every collection C of an even num-
ber of polynomials, all of the same degree d > 2 and in general position,
there exist two hyperbolic 3-orbifolds M1 and M2 with a Möbius morphism
α : M1 → M2 such that the restriction of α to the boundaries ∂M1 and ∂M2

forms a collection of maps Q in the same conformal Hurwitz class of the ini-
tial collection C. Also, we discuss the relationship between conformal Hurwitz
classes of rational maps and classes of continuous isomorphisms of sandwich
products on the set of rational maps.

1. Introduction

Cobordism theory has been studied widely since it was introduced by H. Poincaré
in the context of homology theory. Also R. Thom studied cobordism of embed-
dings. Since then there has been an interest in cobordism of functions, for instance
functions with stable singularities. Cobordims can be endowed with geometric
structures such as symplectic structures, flat connections, or complex structures.

For example, start with a pair of Kleinian groups Γ1 and Γ2 such that Γ1 is a
subgroup of finite index in Γ2. The inclusion map generates a Möbius morphism
α : M(Γ1) → M(Γ2) which is a finite degree orbifold covering. Since ∂M(Γ1)
may be disconnected, the restriction f := α|∂M(Γ1) forms a collection of finite
degree holomorphic coverings from the components of ∂M(Γ1) to the components
of ∂M(Γ2). In this situation, it is natural to say that the collection f forms a
hyperbolic cobordism.

With this point of view we avoid the homological language and will be interested
in the following inverse problem.

Given a collection Q of holomorphic finitely degree (orbifold) coverings, does
there exists a pair of Kleinian groups and a Möbius morphism α which is conformally
equivalent to the collection Q?

Another motivation to this question is the relational dictionary between rational
maps and Kleinian groups. For this reason, the collection of maps will be often
taken as a collection of rational endomorphisms of the Riemann sphere. The main
results of this article are Theorems 1 and 3 below; these are proven in Sections 3,
4, and 5.

In the last section, we characterize algebraically when two rational maps define
the same conformal Hurwitz class. Also we briefly remark that the Hurwitz class
of a rational map R can be presented as a space of quasiconformal deformations of
a semigroup of holomorphic correspondences and discuss the related questions.
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From now on our surfaces are compact surfaces with finitely many punctures
which admit a hyperbolic (orbifold) structure of finite-type. However, some of our
results can be extended to the case of infinite-type.

We start with the following definition.

Definition. A branched covering of finite degree d is a triplet (R,S, S′) where S
and S′ are finite collections of Riemann surfaces and R : S → S′ is a continuous
surjective mapping so that

(1) If Y ⊂ S is a component, then Z = R(Y ) ⊂ S′ is also a component and the
restriction R : Y → Z is a degree dY ≤ d branched covering map.

(2) There is a component Ỹ such that dỸ = d.

We say that a branched coveringR is simple whenever the number of components of
S coincides with the number of components of S′. If R is simple and S is connected,
then we say that R is a single branched covering.

Branched coverings between Riemann surfaces have been studied widely in the
literature. We are interested in the following basic examples.

(1) Rational maps, these are single branched self-coverings of the sphere.
(2) Let Γ be a Kleinian group and let G < Γ be a subgroup with Ω(G) = Ω(Γ);

then the natural projection R : S(G) → S(Γ) is a holomorphic branched
covering map. When Ω(G) �= Ω(Γ), in general, the inclusion map does not
induce a holomorphic covering. Here Ω(Γ) denotes the discontinuity set of
Γ.

It is known that the equality Ω(G) = Ω(Γ) holds when either G is a
subgroup of finite index or is a non-elementary normal subgroup. However,
there are examples of non-elementary groups G with Ω(G) = Ω(Γ) but such
that G is not normal and has infinite index in Γ. If G and Γ are finitely
generated and the limit set of Γ is not a subset of a round circle, then by
the Ahlfors finiteness theorem G necessarily has finite index in Γ.

Even more, as pointed out by the referee, again by the Ahlfors finiteness
theorem G < Γ has finite index whenever Γ has an invariant component in
Ω(Γ) = Ω(G) for finitely generated groups G and Γ.

Any branched covering can be regarded as a collection of single coverings; we call
each of them a single component of the branched covering. We say that a branched
covering R is a holomorphic covering whenever every single component is a holo-
morphic (orbifold) unbranched covering between hyperbolic surfaces (orbifolds).

Given a holomorphic covering (R,S, S′), we can improve (R,S, S′) into a simple
covering in the following way: if X and Y are components of S so that R(X) =
R(Y ) = Z ⊂ S′, then consider a conformal copy Z ′ of Z. Let R′ : X → Z ′ be the
respective holomorphic covering; now the holomorphic covering X � Y → R′(X) �
R(Y ) is simple. By induction on the number of components we construct a simple
holomorphic covering (Q, T, T ′) such that for every single component R : X → Z
of (R,S, S′) there exists a single component Q : X ′ → Z ′ of (Q, T, T ′) and two
conformal homeomorphisms φ : Z → Z ′ and ψ : X → X ′ so that φ ◦ R = Q ◦ ψ.
The previous discussion also motivates the following definition of Hurwitz classes
for non-connected branched coverings.

Definition. Let f : S → S′ be a branched covering, let the Hurwitz class H(f)
of f consist of the triples (g,N,N ′) so that g : N → N ′ is a branched covering, and



HYPERBOLIC COBORDISMS OF HOLOMORPHIC COVERINGS 285

let there exist orientation preserving homeomorphisms ϕ : S → N and ψ : S′ → N ′

such that ψ ◦ f = g ◦ ϕ.

If f : S → S′ is a single branched covering, then H(f) coincides with the classical
Hurwitz space of f . If f is a simple branched covering, then

H(f) =
⊗
Y

H(f, Y, f(Y )),

where the product is taken over the connected components Y of S.
Given a holomorphic map f , the set

CH(f) = {(g,N,N ′) ∈ H(f), φ, ψ conformal}

is called the conformal Hurwitz class of the holomorphic covering f.
For example, if f : C → C is a finite degree branched covering, then H(f)

contains a rational map of the same degree. When f is a rational map the set
H(f)∩Rat(C) = S(f) is known as the Speisser class of f and was introduced into
holomorphic dynamics by A. Erëmenko and M. Lyubich in [4]. By Teichmüller’s
theorem, if f is holomorphic of finite degree and if g ∈ H(f) is holomorphic, then
the associated homeomorphisms φ and ψ can be taken quasiconformal. For general
holomorphic maps, this is not true. It is not even clear whether φ and ψ can be
taken to be local quasiconformal maps for an infinite degree holomorphic map f.
A plausible counterexample is an entire map f such that the set of singularities of
f−1 has positive Lebesgue measure.

The hyperbolic cobordism between two holomorphic coverings (R1, S1, S
′
1) and

(R2, S2, S
′
2) is given by the triple (
,M,M ′) satisfying the following conditions:

(1) There are geometrically finite Kleinian groups Γ,Γ′ < PSL(2,C) such that

M = M(Γ) = (B
⋃

Ω(Γ))/Γ

and

M ′ = M(Γ′) = (B
⋃

Ω(Γ′))/Γ′.

Hence, M and M ′ are oriented hyperbolic 3-orbifolds with natural projec-
tions π : B

⋃
Ω(Γ) → M , and π′ : B

⋃
Ω(Γ′) → M ′. The map 
 : M → M ′

is a surjective Möbius morphism, that is, there exists an orientation pre-
serving Möbius map α such that the following diagram commutes:

(1) B
⋃
Ω(Γ)

π

��

α �� B
⋃
Ω(Γ′)

π′

��
M

� �� M ′.

(2) The boundary ∂M is conformally equivalent to
⊔
Si and ∂M ′ conformally

equivalent to
⊔
S′
i, so that

(
|∂M , ∂M, ∂M ′) ∈
2⊗

i=1

CH(Ri, Si, S
′
i).
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Hence 
 is a local isometry between the respective hyperbolic metrics on M(Γ)
and M(Γ′) induced by the Kleinian groups Γ and Γ′, respectively.

Given two holomorphic coverings R1 and R2, if there exists a hyperbolic cobor-
dism between R1 and R2, we will say that R1 � R2 forms a cobordant family of
holomorphic coverings, or that R1 is hyperbolically cobordant to R2.

Given a finite degree holomorphic branched covering R : M → N , between
Riemann surfacesM andN , there are many ways to transformR into a holomorphic
covering between hyperbolic orbifold structures supported on M and N .

We consider the simplest construction depending on the ramification data of R
and a finite subset A ⊂ N as follows: first restrict R to R : {S = M \ R−1(A)} →
{S′ = N \A}. Second, using the ramification data of R produce orbifold structures
on S and S′ so that R is a holomorphic (orbifold) covering between hyperbolic
orbifold structures supported on S and S′, respectively.

In particular, if A = ∅, then the canonical orbifold structure on M and N defined
by the ramification data of R must be hyperbolic. For instance, in the case where
R(z) = zn, the set A must be non-empty and card(A \ {0,∞}) ≥ 1 for n ≥ 3.

If A = V (R) is the set of critical values of R, and the surfaces S and S′ are hy-
perbolic, then the triple (R,S, S′) is called the canonical holomorphic representative
of the holomorphic branched covering R : M → N.

Examples. (1) The null cobordism where S and S′ are connected is related to
the extension of a single holomorphic covering to the respective 3-hyperbolic
spaces. This situation has been studied in [3] with applications to holomor-
phic dynamical systems. In particular, in [3] the authors gave the con-
struction of a geometric extension for generic rational maps. The present
article develops the geometrical part of [3] in the case of a collection of
holomorphic coverings.

(2) The trivial cobordisms. Consider the identity maps Idi : Si → Si, where
Si is a Riemann surface for i = 1, 2. Then the existence of a cobordism
between Id1 and Id2 reduces to the existence of a hyperbolic manifold with
boundary conformally equivalent to S1 � S2. Then we have:

• If S1 is quasiconformally equivalent to S2, then by the Bers simulta-
neous uniformization theorem there exists a quasifuchsian group uni-
formizing the surfaces S1 and S2, so that S1�S2 is conformally equiv-
alent to the boundary of a hyperbolic 3-manifold. The quasifuchsian
group can be chosen a fuchsian group if there is an anticonformal iso-
morphism between S1 and S2.

• For any surface S1 consisting of a finite number of hyperbolic compo-
nents, there exists a connected hyperbolic surface S2 such that S1�S2

can be uniformized by a geometrically finite function group. This
uniformization is given by the Klein-Maskit combination theorems in
such a way that S1�S2 bounds an oriented hyperbolic 3-orbifold. This
observation will be needed in the proof of Theorem 1.

• Whenever S is a compact hyperbolic closed connected Riemann surface
with an even number of cusps, there exists a Schottky-type group
uniformizing S so that S is conformally equivalent to the boundary of
a 3-hyperbolic manifold.

Connected transitivity. Given three single holomorphic coverings R1, R2, and
R3 such that the pairs (R1, R2) and (R2, R3) are each hyperbolically cobordant by
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manifolds M1 and M2, and assuming that the canonical homorphisms π1(Si) →
π1(Mi) and π1(S

′
i) → π1(M

′
i) are injective, then R1 is hyperbolically cobordant to

R3. In fact, this follows from Thurston’s hyperbolization theorem.

In general, without the single and injective assumptions, it is not clear that the
manifold, resulting by gluingM1 andM2 along the boundary components associated
to R2, is hyperbolic. This is because the result of gluing hyperbolic manifolds along
the boundary may not be hyperbolic. For instance, consider a geometrically finite
hyperbolic 3-manifold M which has an essentially embedded annulus A. Let S1 and
S2 be not necessarily different components of ∂M containing the boundary of A.
Take a copy of M , say M ′, and make V = M �S1�S2

M ′ by gluing M and M ′ along
S1�S2. Then V does not accept a hyperbolic metric since V contains a torus which
is not homotopic to the ideal boundary of V. This indicates that there might be
obstacles to the existence of a hyperbolic cobordism between multiple coverings.

Now we formulate our first main theorem.

Theorem 1. Given a simple holomorphic covering F1, there exists another holo-
morphic covering F2 such that F1 � F2 forms a family of cobordant holomorphic
coverings.

Moreover, if F1 has a single component R0 with degree deg(R0) > 1, then the
covering F2 contains only one single component, say Q0, with degree larger than 1
and deg(Q0) =

∑n
i=0 deg(Ri)− n where Ri are single components of F1 and n+ 1

is the number of these components.
We need the following definition.

Definition. A holomorphic covering Q : S → S′ is called an anticonformal copy of
the holomorphic covering map R : T → W if there are anticonformal homeomor-
phisms α : S → T and β : S′ → W so that β ◦ Q = R ◦ α. Given a holomorphic
covering R, we call the Hurwitz classH(R) symmetric if and only ifH(R) contains
an anticonformal copy of an element g ∈ H(R). Finally, we say that a holomorphic
covering is symmetric if its Hurwitz class is symmetric.

Let us note that if f : C → C is a branched covering, then H(f) is symmetric
whenever H(f) contains a real rational map, that is, all coefficients are real. In
particular, if B is a Blaschke endomorphism, then H(B) is symmetric. Moreover,
if

⊔
B H(B) is the union of all Hurwitz classes of Blaschke endomorphisms and

g ∈
⊔

B H(B) then H(g) is symmetric. Also for every natural number d, by the
Theorem 3.4 in [1], the set

⊔
B H(B) ∩Ratd(C) is connected and contains an open

and everywhere dense subset of the space of Ratd(C). Here Ratd(C) denotes the set
of rational maps of degree d. A Blaschke endomorphism is a rational map B with
B−1(D) = D where D is the open unit disk in C.

In general it is not clear that the Hurwitz class of any finite degree branched
covering between closed Riemann surfaces is symmetric. But we believe that is true
for Hurwitz classes of rational maps.

Definition. Two cobordant holomorphic coverings R1 and R2 are called simply
cobordant if and only if M and M ′ are homeomorphic to S1× [0, 1] and S′

1× [0, 1],
respectively.
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Theorem 2. Two symmetric single holomorphic coverings R1 and R2 belong to
the same Hurwitz class if and only if R1 and R2 are simply cobordant.

Theorem 1 shows that any finite family of coverings can be included in a family of
cobordant coverings which is non-simple and includes single univalent components
on the boundary. Theorem 2 gives a condition for when a pair of holomorphic
coverings of the Riemann sphere is cobordant.

With Theorem 2 at hand we improve Theorem 1 into Theorem 3. First recall
that a holomorphic polynomial map P : C → C of degree d > 1 is in general
position if there are d − 1 different finite critical values V (P ). It is known that
two polynomial maps in general position belong to the same Hurwitz class if and
only if these polynomials have the same degree. Also, every polynomial in general
position is symmetric.

Theorem 3. The canonical holomorphic representatives of every collection of an
even number of polynomials in general position of the same degree d > 2 form a
hyperbolic cobordism.

2. Some background on Kleinian groups

For the convenience of the reader here we collect some facts from Kleinian group
theory which will be used in this article. We follow the books of M. Kapovich [5]
and A. Marden [6] which give a modern introduction to Kleinian groups.

Denote by B the Poincaré model of the hyperbolic 3-space, that is, the unit
ball in R3 equipped with the Poincaré metric. Given a group Γ of automorphisms
of the Riemann sphere, we denote by Ω(Γ) the discontinuity set of Γ on C. The
isometry group of B acts on the Riemann sphere C = ∂B as the whole group
of Möbius transformations Mob(C) including anticonformal automorphisms. A
discrete subgroup Γ of Isom(B) is a Kleinian group if Ω(Γ) �= ∅. Historically, a
Kleinian group is defined as a subgroup of orientation preserving isometries of B,
but we need the extended definition in order to apply Brook’s deformation theorem.
Also we follow the definition in [5] where it is shown that many classical theorems
for orientation preserving Kleinian groups extend to the general case without many
difficulties.

Define S(Γ) = Ω(Γ)/Γ and M(Γ) = (B�Ω(Γ))/Γ and note that S(Γ) = ∂M(Γ).
Both spaces S(Γ) andM(Γ) can be endowed with a hyperbolic orbifold structure.

For an orbifold O, let |O| be the underlying space of O. When Γ contains orientation
reversing elements, one has to be cautious with the fact that |S(Γ)| is a proper
subset of ∂|M(Γ)|. The points in ∂|M(Γ)| \ |S(Γ)| are interior points in the orbifold
structure contained in the singular locus. In other words, neighborhoods of these
points are modeled by the quotient of a ball by the action of a finite group of
isometries of B. The simplest example to have in mind is the space X which is the
quotient of C by the map z �→ z. Then X admits the structure of a manifold with
boundary homeomorphic to the closure of the upper half-space. Alternatively, X
also possesses the structure of an orbifold without boundary where the real line is
the singular locus of the orbifold.

Definition. A 3-manifold M is called geometrically finite if there exists a compact
submanifold with boundary M0 such that M \ M0 is a disjoint union of finitely
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many pieces Vi such that either

• Vi is homeomorphic to S1 × (D \ {0}), where D is the open unit disk in C

and S1 is the unit circle in C; or
• Vi is homeomorphic to [0, 1]× (D \ {0}) so that the punctured disks {0} ×
(D \ {0}) and {1} × (D \ {0}) belong to ∂M.

A Kleinian group Γ is called geometrically finite if and only if it contains a finite
index subgroup Γ0 such that M(Γ0) is geometrically finite.

The pieces Vi in the definition are usually known as solid cusp torii and solid
pairing tubes, respectively. There are many equivalent definitions of geometrically
finite Kleinian groups; see for example [5] and [6].

2.1. Pinching. In what follows we describe the pinching procedure for a finite
family of disjoint simple closed geodesics on a Riemann surface S contained in S(Γ)
for a geometrically finite Fuchsian group Γ < PSL(2,C), according to theorems of
B. Maskit [7] and K. Ohshika [10]; see also the pinching theorem of Section 5.15 in
[6].

For r > 0 let Ar = {z : 1
r < |z| < r} be the round symmetric annulus and con-

sider the homeomorphism of the plane F (z) = z|z|; note that F (z) is quasiconfor-

mal. Take the sequence μn of Beltrami differentials on Ar defined by μn = ∂Fn

∂Fn |Ar

where Fn is the nth iterated of F and the partial derivatives are taken in the sense
of distributions. Then ‖μn‖ → 1 as n → ∞.

Let li be a finite collection of disjoint simple closed geodesics in S; then by the
collar lemma there exists r0 and a family of conformal embeddings hi : Ar0 →
S(Γ) with hi(S

1) = li and the closed sets h(Ar0) are mutually disjoint. By taking
the simultaneous push-forward of μn by the maps hi, we obtain a sequence ν̃n of
Beltrami differentials on S supported on the union of the annular neighborhoods
hi(Ar0). Now lift the sequence ν̃n over Ω(Γ) by the natural projection Ω(Γ) → S(Γ)
to get a sequence νn of Beltrami differentials in Ω(Γ) with ‖νn‖ → 1. If fn is a
solution of the Beltrami equation with coefficient νn, then the group Γn = fn◦Γ◦f−1

n

in PSL(2,C) is quasifucshian. In case that Γ acts on D and S = D/Γ then all the
maps fn are holomorphic outside D.

Then the following theorem is true.

Theorem 4. Let Γn be a family of quasifuchsian groups as constructed above.
After taking a suitable subsequence there exists a geometrically finite Kleinian group
Γ∞ = limΓnk

in the topology of convergence on generators so that

• Γ∞ � Γ.
• The interior of M(Γ∞) is homeomorphic to the interior of M(Γ).
• The surface S(Γ∞) is homeomorphic to S(Γ)\(

⋃
li). Even more, the home-

omorphism can be chosen to be holomorphic outside
⋃
hi(Ar0) and each li

determines a pair of punctures in S(Γ∞),

The previous theorem is proved by Maskit for function groups, with the condi-
tion that the closed simple curves l ∈ S(Γ) to be pinched must have loxodromic
representatives in the group, which represent different conjugacy classes. The last
condition always holds for simple closed geodesics which belong to the same con-
nected component of S(Γ) for a given quasifuchsian group Γ. In [10], Ohshika
extends the theorem of Maskit to all geometrically finite groups. Our version fol-
lows the exposition of Marden in the pinching theorem of Section 5.15 of [6].
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Klein-Maskit combination theorem. We will need the following theorem in
the proof of Theorem 1. See [7].

Theorem 5 (Klein-Maskit’s combination Theorem I [8].). For i = 1, 2, let Γi

be a Kleinian group with region of discontinuity Ωi and a fundamental region Fi.
Assume that there is a simple closed loop γ contained in the interior of F1 ∩ F2,
bounding two complemented disks D1 and D2 with Di ⊂ Fi. Then Γ = 〈Γ1,Γ2〉 is
a Kleinian group, such that:

(1) The group Γ is isomorphic to the free product Γ1 ∗ Γ2. If Γ1 and Γ2 are
geometrically finite, then Γ is so.

(2) Let Si = Ki/ Stab(Ki) be surfaces where Ki ⊂ Ω(Γi) are the components
containing γ and Stab(Ki) < Γi are their respective stabilizers. Then S(Γ)
is homeomorphic to

(S(Γ1) \ S1) � (S(Γ2) \ S2) � (S1#S2),

where S1#S2 is the connected sum of the surfaces S1 and S2 along the
respective projections of D1 and D2.

Even more, this homeomorphism can be chosen holomorphic on S(Γ) \
S1#S2.

(3) The manifold M(Γ) is homeomorphic to the disk sum M(Γ1) with M(Γ2)
induced by the disks determining the connected sum S1#S2.

Disk patterns and Brook’s deformation theorem. The following construc-
tion is needed in the proof of Theorem 3.

Definition. Let Γ be a geometrically finite torsion-free Kleinian group. Then a
collection K of closed sets Ki ⊂ S(Γ) is called a round disk collection if and
only if the set K consists of finitely many elements and every element Ki is either a
homeomorphic projection of a compact round disk D ⊂ Ω(Γ) to S(Γ) or is a closed
punctured disk in S(Γ) where the puncture corresponds to a cusp of S(Γ) and Ki

is covered by a round disk D \ {p} ⊂ Ω(Γ), where D is precisely invariant under its
parabolic stabilizer γ ∈ Γ and p is the fixed point of γ with p ∈ ∂D.

Definition. A finite round disk collection K ⊂ S(Γ) is called a pattern of round
disks if and only if the following holds:

(1) No point in S(Γ) is covered by the interior of more than two disks in K.
(2) Given two different disks Ki and Kj , then either the interiors of Ki and

Kj are disjoint or their boundaries are orthogonal.

Each disk Ki ⊂ K is covered by a round disk Di ∈ C. If C(Di) is the convex
hull of ∂Di in B with respect to the Poincaré metric, then C(Di) is invariant under
the stabilizer of Di in Γ. Let V (Di) be the component of B \C(Di) containing Di.
Let Y (Ki) ⊂ M(Γ) be the projection of V (Di) in M(Γ) and

MK = M(Γ) \
⋃

Ki∈K

Y (Ki);

then on the manifold MK there exists a natural polyhedral geometric structure G
which on the interior of MK coincides with the hyperbolic structure of int(M(Γ)),
on M(Γ)∩ (

⋃
∂Y (Ki)) the structure G is a polyhedral piecewise geodesic structure,

and on the remaining boundary components of MK the structure coincides with
the Möbius structure inherited from M(Γ).
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Let K̃ be the collection of all round disks in Ω(Γ) which cover all Ki ⊂ K. Let
ΓK < Isom(B) be the group generated by Γ and the reflections with respect to the

circles ∂D for D ∈ K̃. Then Theorem 13.1 in [5] states as follows.

Theorem 6. The group ΓK is geometrically finite and M(ΓK) is an orbifold dif-
feomorphic to MK equipped with the structure G.

Remarks. (1) In particular, if a component Ω0 ⊂ Ω(Γ) does not intersect K̃,
then the stabilizer of Ω0 in ΓK coincides with the stabilizer of Ω0 in Γ.
Therefore, if a disk patternK completely covers exactly one component S ⊂
∂M(Γ), then ∂(M(ΓK)) is a 2-dimensional orbifold which is conformally
equivalent to ∂M(Γ) \ S.

(2) The charts around points on ∂(Y (Ki)) are modeled with the quotient of the
unit 3-dimensional ball by a finite group, this group is generated by reflec-
tions on planes passing through the origin. In particular, in this structure
the points in ∂Y (Ki) \ Ki are interior points of MK equipped with the
structure G.

The following simple example shows how this procedure works. Let S be any
Riemann surface and let Γ be a Fuchsian group uniformizing S. Then M(Γ) is a
hyperbolic manifold homeomorphic to S × [0, 1], the boundary of M(Γ) consists
of S and an anticonformal copy of S. Let τ be the reflection with respect to the
unit circle, then τ commutes with Γ. Let G = 〈Γ, τ 〉. Thus G is a Kleinian group
and M(G) is a non-orientable hyperbolic orbifold, so that ∂M(G) is conformally
equivalent to S. The underlying space of the orbifold M(G) is a manifold which still
is homeomorphic to S × [0, 1] but now, one of the components consists of interior
points of the orbifold structure on M(G).

The following theorem justifies the existence of a pattern of disks for a quasicon-
formal deformation of a given geometrically finite group. This theorem is part of
the proof of the Brooks orbifold deformation theorem. More precisely, see the steps
1 to 4 in the proof presented in Section 13.5 of [5]. The statement is as follows.

Theorem 7. For any torsion-free geometrically finite Kleinian group Γ there exists
a quasiconformal homeomorphism h such that the group Γh = h ◦Γ ◦ h−1 is so that
S(Γh) admits a pattern K which completely covers S(Γh).

With this background we can proceed to prove our theorems.

3. Proof of Theorem 1

3.1. Connected sums of single coverings. Now we reproduce a topological op-
eration between branched coverings which is a sort of “connected sum” of coverings.
This operation consists of taking the connected sum of the target surfaces and a
pull-back with respect to the branched coverings. Note that there are different ways
to make a pull-back. We choose the simplest as follows.

Start with two single finite degree branched coverings R1 : S → S′ and R2 :
T → T ′. We construct R0 = R1#R2, the connected sum of branched covering
maps R1 and R2, as a branched covering between two surfaces U and W such that
deg(R0) = deg(R1) + deg(R2) − 1 and W = T ′#S′ is the connected sum with
respect to topological disks DS ⊂ S′ and DT ⊂ T ′ not containing the branched
points (critical values) of R1 and R2, respectively.
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Topological construction of U . Set deg(R1) = n and deg(R2) = m. Let S′′ =
S′ \DS and T ′′ = T ′ \DT and h : ∂DS → ∂DT be a gluing homeomorphism. Let
S0 = R−1

1 (S′′) ⊂ S and T0 = R−1
2 (T ′′) ⊂ T. Let us fix the following system of

curves and homeomorphisms.

(1) Take two components of the boundaries, α0 a component of ∂S0 and β0

a component of ∂T0. Let φ0 : α0 → β0 be a homeomorphism such that
R2 ◦ φ0 = h ◦R1.

(2) If γ is another component of either ∂S0 or ∂T0, and different from α0 and
β0, then fix a homeomorphism φγ which is either h ◦ R1|γ or h−1 ◦ R2|γ ,
depending on the case. For i = 1, . . . ,m− 1, let {Si} be m− 1 copies of S′′

and for j = 1, . . . , n− 1 let {Ti} be a family of n− 1 copies of T ′′. Then

U = S0 � T0 � {�Si} � {�Ti}/ ∼,

where the quotient is taken according to the system of homeomorphisms.
More precisely, the homeomorphism φ0 identifies α0 with β0, and the map
φγ identifies the component γ, which is either in ∂S0 or in ∂T0, with the
respective copies of T ′′ or S′′. The identification is taken in such a way that
U is a connected surface and there exists a branched covering R1#R2 : U →
W so that R1#R2|S0

= R1 : S0 → S′′ and R1#R2|T0
= R2 : T0 → T ′′. The

restriction of R1#R2 on each one of the remaining copies, of either T ′′ or
S′′, is univalent.

Then, we have that

genus(U) = genus(S) + (m− 1)genus(S′) + genus(T ) + (n− 1)genus(T ′).

Moreover, punctures and holes satisfy the same equation as the genus.
If R1 and R2 are holomorphic branched coverings between Riemann surfaces,

then by taking a conformal gluing in the construction of U we can assume that
R1#R2 : U → W is a holomorphic branched covering. In other words, the Hur-
witz class of a topological connected sum between surfaces contains a holomorphic
branched covering.

Hence any branched covering of the Riemann sphere, in general position and
degree d, can be presented as the connected sum of d− 1 copies of z2.

If R1(z) = z2 and R2(z) = z3, then R1#R2 is a degree 4 branched self-covering
of the topological sphere.

Figure 1 illustrates yet another example; in this case, it shows the connected
sum of rational maps in general position of degree 3 and 4.

3.2. Pinching. We can recover the factors of the connected sum R1#R2 by a
pinching procedure as follows.

Let us note that if R1#R2 : S1 → S2 is a connected sum of coverings with
deg(R1), deg(R2) ≥ 2, then R1#R2 : U → W is a finite degree covering between
hyperbolic surfaces where

W = S2 \ CritVal(R1#R2) and U = S1 \ (R1#R2)
−1(CritVal(R1#R2)).

In other words, R1#R2 always has a canonical representative whenever

deg(R1), deg(R2) ≥ 2.
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Copies of S′′

R2
R1 R1#R2

Copies of T ′′

Figure 1. The connected sum of rational maps R1 and R2 of
degree 3 and 4, respectively. The dots depict the respective critical
values below and their preimages above.

Let G,Γ2 be the Fuchsian groups uniformizing the surfaces U and W in the unit
disk, respectively. Let πU , πW : D → U,W be the respective uniformizing projec-
tions; then there exists α a Möbius automorphism of D satisfying R1#R2 ◦ πU =
πW ◦ α and such that the subgroup Γ1 = αGα−1 < Γ2 has finite index.

We will say that the fixed pair of groups Γ1 < Γ2 and the inclusion map uni-
formizes R1#R2.

On the other hand, the pair Γ1 < Γ2 acts on D∗ where D∗ = C\D and defines an
orbifold covering map Q : U∗ → W ∗, where U∗ = D∗/Γ1 and W ∗ = D∗/Γ2 are the
anticonformal copies of U and W , respectively, and such that Q is an anticonformal
copy of R1#R2 : U → W.

Let C be the unique simple closed geodesic in the isotopy class of a simple loop
on W providing the connected sum. According to Theorem 4:

• There exists a sequence fk of quasiconformal automorphisms of the Rie-
mann sphere holomorphic outside the unit disk such that the groups Γ2,k =

fk ◦Γ2 ◦ f−1
k are quasifuchsian groups converging to a Kleinian group Γ2,∞

with an invariant component of Ω(Γ2,∞).
• The surface S(Γ2,∞) is homeomorphic to (W \C) �W ∗ and C determines
a pair of punctures on S(Γ2,∞). Moreover, the homeomorphism can be
chosen conformal outside a tubular neighborhood of C.

In other words S(Γ2,∞) is conformally equivalent to

(S′ \ {x}) � (T ′ \ {y}) �W ∗,

where x and y are the additional cusps determined by C. Indeed the perforations
x and y are known as accidental cusps (accidental parabolics) which appear in
pinching processes. Let Γ1,∞ be the respective limit of the groups fk◦Γ1◦f−1

k ; then
Γ1,∞ ∼= Γ1. Since (R1#R2)

−1(C) consists of finitely many simple closed geodesics
on U , then according to Theorem 4 the surface S(Γ1,∞) is topologically equivalent
to (U \ (R1#R2)

−1(C))�U∗. These equivalences can be chosen conformal outside
tubular neigborhoods of the curves in (R1#R2)

−1(C). In conclusion, Γ1,∞ < Γ2,∞
induces a covering map H : S(Γ1,∞) → S(Γ2,∞) so that the restriction of H to
the component associated to U∗ is in the conformal Hurwitz class of Q. Among
the restrictions to the other components of S(Γ1,∞) which are coverings there are
only two which have degree larger than one, the other restrictions are univalent.
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The pair of non-univalent coverings belongs to the conformal Hurwitz class of the
coverings R1 and R2.

The result of pinching the manifolds of the example depicted in Figure 1 is shown
in Figure 2.

R2
R1

Figure 2. In this picture we applied pinching to the example in
Figure 1.

3.3. Klein-Maskit combinations and the connected sums of coverings.
Now we are ready to prove Theorem 1.

Proof of Theorem 1. First, begin with two single holomorphic covering maps R1 :
S → S′ and R2 : T → T ′ of degree n and m, respectively, denote by Γ and Γ′ the
respective Fuchsian uniformizing groups of S and S′, and groups G and G′ for the
surfaces T and T ′ acting on the unit disk D so that Γ < Γ′ and G < G′ and the
inclusion maps induce the covering R1 and R2, respectively. If D∗ = C \ D, then
inclusion maps (Γ,D∗) → (Γ′,D∗) and (G,D∗) → (G′,D∗) define anticonformal
copies of R1 and R2, respectively. Denote by Q1 : S∗ → (S′)∗ and Q2 : T ∗ → (T ′)∗

these anticonformal copies. We have that [Γ′ : Γ] = n and [G′ : G] = m; following
the construction of the previous section we construct a covering map of degree
n+m− 1. Define R0 := Q1#Q2; thus R0 maps U to W = (S′)∗#(T ′)∗.

Group construction of U . We follow the topological construction above with
the Klein-Maskit combination theorem. Let τ (z) = 1/z be the reflection and fix

suitable round closed disks D ⊂ τ (F (Γ)) and D̃ ⊂ τ (F (G)), where F (Γ) and F (G)
are fundamental regions for the actions of Γ and G in D, respectively. Now let

h ∈ PSL(2,C) be an element so that h(∂D) = ∂D̃ and h maps the interior of D

onto the exterior of D̃. Then the pair of groups Γ′ and h−1 ◦G′ ◦ h and the disks
D1 = D and D2 = C \D1 satisfy the conditions of the Klein-Maskit combination
theorem. Since h−1 ◦ G′ ◦ h is a Möbius copy of G′ we can assume, by taking
suitable Möbius copies, that the groups Γ′ and G′ already satisfy the conditions of
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Theorem 5. By Theorem 5, the orbit space S(〈Γ′, G′〉) is conformally equivalent to
S′ � T ′ � ((S′)∗#(T ′)∗).

Consider elements {e, σ2, . . . , σn} ⊂ Γ′ and {e, g2, . . . , gm} ⊂ G′ such that Γ′ =
Γ ∪ · · · ∪ σnΓ and G′ = G ∪ · · · ∪ gmG. Let Γi = gi ◦ Γ′ ◦ g−1

i be m − 1 Möbius

copies of Γ′ and let Gj = σj ◦ G′ ◦ σ−1
j be n − 1 Möbius copies of G′. Then

by an inductive application of the Klein-Maskit combination theorem the group
H = 〈Γ, G,Γ2, . . . ,Γm, G2, . . . , Gn〉 is isomorphic to

Γ ∗G ∗
m∏
i=2

Γi ∗
n∏

j=2

Gj .

Hence, the manifold M(H) is a disk sum of the manifolds M(Γ),M(G),M(Γi), and
M(Gj), where the latter are n−1 Möbius copies of M(Γ′) and m−1 Möbius copies
of M(G′), respectively.

The inclusion of H in Γ′ ∗G′ induces a holomorphic (orbifold) covering

ι̂ : M(H) → M(〈Γ′, G′〉)

which has finite degree, thus H has finite index in 〈Γ′, G′〉. Then the restriction
ι̂ : S(H) → S(〈Γ′, G′〉) is so that there exist three surfaces S1, S2, and S3 in
S(H) where deg(ι̂|Sj

) > 1, the space S1 � S2 � S3 is conformally equivalent to

S � T �U , and î(S1 �S2 � S3) is conformally equivalent to S′ � T ′ �W . Moreover,
the map ι̂ belongs to CH(R1, R2, Q1#Q2) = CH(R1) � CH(R2) � CH(Q1#Q2).
If O ⊂ S(H) \ {S1 � S2 � S3}, then ι̂ := O → ι̂(O) is an univalent holomorphic
surjective map, even more ι̂(O) is either S′ or T ′. So ι̂ is a non-simple holomorphic
covering containing single univalent components.

In conclusion, ι̂ is a Möbius morphism which defines a hyperbolic cobordism
between the collections R1 : S → S′, R2 : T → T ′, Q′

1#Q2 : U → W and single
univalent components.

For the general case with three or more coverings Ri : Si → S′
i, i = 1, . . . , k, we

proceed inductively. This finishes the proof. �

Now what can we say about non-simple holomorphic coverings? We start with
the following examples of uniformizable non-simple holomorphic coverings.

(1) Let Γ be a geometrically finite Fuchsian group such that γ ◦Γ◦γ−1 = Γ for
γ(z) = 1

z . Then G = 〈Γ, γ〉 is isomorphic to an HNN -extension of Γ and
is a geometrically finite Kleinian group, so that M(G) = (Ω(G) ∪ B)/G is
a geometrically finite hyperbolic orbifold with connected boundary which
is a hyperbolic orbifold conformally equivalent to D/Γ. More, the inclusion
Γ < G induces a degree 2 branched covering π : M(Γ) → M(G) so that
π(∂M(Γ)) = ∂M(G) and for any component S ∈ ∂M(Γ) the restriction
π|S : S → ∂M(G) is a conformal equivalence. Now let Γ0 < Γ be a subgroup
of index d. Then the inclusion Γ0 in Γ induces a branched covering map
p : M(Γ0) → M(Γ) of degree d, so that for any component S ⊂ ∂M(Γ0)
the restriction p|S is an orbifold covering map of degree d. Then π ◦ p is a
non-simple holomorphic covering of degree d.

(2) Let Γ be a Kleinian group such that ∂M(Γ) is connected and the compo-
nents of Ω(Γ) are simply connected with stabilizers of infinite index. Such
groups are known as web-groups. Since geometrically finite Kleinian groups
are also residually finite we can choose a subgroup H < Γ of finite index
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such that ∂M(H) is disconnected. The map π : ∂M(H) → ∂M(Γ) given
by the canonical holomorphic orbifold covering induced by the inclusion
H ⊂ Γ is non-simple with at least two components S1 and S2 ⊂ ∂M(H)
such that deg(πS1

) > deg(π|S2
).

We have not found in the literature whether for any connected hyperbolic Rie-
mann surface S there exists a web-group G with ∂M(G) conformally equivalent to
S. However, M. Kapovich kindly pointed out that this construction can be done
using the Brooks deformation theorem (see [5]).

Given a holomorphic covering (R,S, S′), if S′ is connected, then we say that R is
primitive. We call a primitive holomorphic covering uniformizable if there exists a
pair of web-groups H < Γ, with H of finite index, so that the canonical holomorphic
covering π : M(H) → M(Γ) belongs to CH(R,S, S′). So far we have no examples
of non-simple non-uniformazible holomorphic coverings.

Connected sum of non-simple coverings. Given two primitive holomorphic
coverings (R1, S1, S

′
1) and (R2, S2, S

′
2), we construct a connected sum R1#R2, in

a similar but slightly different way as in Subsection 3.1 as follows: for i = 1, 2
fix two open topological disks ti ⊂ S′

i, not containing branching points of Ri,
respectively, together with a homeomorphism φ : ∂t1 → ∂t2. Let g1 be a single
component of R1; then the map φ◦g1 defines a family of homeomorphisms from the
components of g−1

1 (∂t1) to ∂t2. Let S
′′
2 = S′

2 \ t2 and we glue the copies of S′′
2 to the

surface g−1
1 (S′

1 \ t1) along the family of homeomorphisms φ ◦ g1 on g−1
1 (∂t1). Using

induction with respect to all single components of R1 we construct a non-simple
holomorphic covering (R̂1, T, T

′) with T ′ = S′
1#S′

2. Now repeat the process for a

single component g2 of R2 to get a non-simple holomorphic covering (R̂2,W,W ′)

with W ′ = S′
1#S′

2 and finally we put R1#R2 = (R̂1, T, T
′) � (R̂2,W,W ′) which is

a primitive non-simple holomorphic covering.
Let us note that the case of holomorphic coverings over a surface of genus zero

is special in the following sense: let R1 and R2 be non-simple holomorphic cover-
ings onto the Riemann sphere with finitely many points removed. If g is a single
component of R1, then the induced single component f of R1#R2 belongs to H(g)
up to forgetting additional perforations on the source and the target surfaces. We
call such a primitive covering a primitive covering of genus zero. This observation
leads to the following lemma.

Lemma 8. Let R1 : S1 → S′
1 and R2 : S2 → S′

2 be holomorphic coverings over
S′
1 and S′

2 which are Riemann spheres with finitely many points removed. Then we
can choose for i = 1, 2 disks ti ⊂ S′

i and a gluing map φ : ∂t1 → ∂t2 such that every
single component of R1#R2 belongs to either CH(R1) or CH(R2) up to forgetting
additional perforations.

Proof. Let t ⊂ C be a round open disk such that t ⊂ S′
1 and not containing

branching points of R1. Let X ⊂ C be the set C \ (S′
2 ∪ V (R2)), where V (R2) is

the set of branching points of R2, and γ ∈ PSL(2,C) is so that γ(X) ⊂ t. Then for
the coverings R1 and γ ◦ R2 we choose t1 = t and t2 = C \ t. Taking φ = Id on ∂t
finishes the proof of the lemma. �

Another application of the Klein-Maskit combination theorem and the arguments
of the proofs of Theorem 1 and Lemma 8 allow us to improve Theorem 1 as follows.
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Theorem 9. Let R1 and R2 be two primitive uniformizable genus zero holomor-
phic coverings. Then there exists a primitive uniformizible genus zero holomorphic
covering Q so that for every single component q of Q there exists r, which is either
a single component of R1 or a single component of R2, so that q ∈ CH(r) after,
perhaps, forgetting additional perforations.

Proof. Let Γ1 and Γ2 be web-groups uniformizing R1 and R2. As in Theorem 1 we
apply the Klein-Maskit combination theorem to Γ1 and Γ2 and construct a finite
index subgroup of Γ1 ∗ Γ2 compatible to the connected sum R1#R2. �

Remark. The Klein-Maskit theorems are generalized to Kleinian groups in higher
dimensions, so our Theorem 1 generalizes in that setting as well.

4. Proof of Theorem 2

Theorem 2 is a direct application of the Bers simultaneous uniformization theo-
rem.

Proof of Theorem 2. Assume that R1 and R2 are two symmetric holomorphic cov-
erings forming a simple hyperbolic cobordism. Then the respective geometrically
finite Kleinian groups Γ1 and Γ2 are quasifuchsian. We can assume that Γ1 < Γ2.
Since every quasifuchsian group is quasiconformally equivalent to a Fuchsian group,
Γ2 admits an orientation reversing quasiconformal involution τ : C → C commuting
with Γ2, interchanging components of Ω(Γ2) and which is the identity on the limit
set Λ(Γ2). Hence, τ commutes with Γ1. Since R1 and R2 are symmetric, then R1

and R2 belong to the same Hurwitz class.
Assume that two symmetric holomorphic coverings R1 and R2 belong to the same

Hurwitz class. Then we can construct cobordisms between R1 and an anticonformal
copy of R1, together with a cobordism between R2 and an anticonformal copy of
R2. The homeomorphisms φ and ψ associated to R1 and R2 allow us to glue the
given cobordisms along the anticonformal copies to get a cobordism between R1

and R2. �

What follows is an example of a topological cobordism between the simplest
rational maps.

Let us consider the convex combination between z2 and z3:

ft(z) = (1− t)z2 + tz3

for t ∈ I = [0, 1]. Then ft defines a rational endomorphism F of 3-manifolds
X = C× I by the formula

F (z, t) = (ft(z), t).

Then

i) The map F is not a branched self-covering of X.
ii) Let Xt1,t2 = C × [t1, t2]; then the restriction of F to Xt1,t2 is a branched

self-covering of Xt1,t2 for 0 < t1 < t2 < 1.
iii) If 0 < t1 < t2 < 1, then for t1 ≤ t ≤ t2 the real polynomial ft is in general

position and the sets of the critical values {v1}, {v2} of F in Xt1,t2 forms
two embedded arcs connecting the boundaries of Xt1,t2 . Moreover, for each
i the set F−1(vi) consists of two curves αi,j , with j = 1, 2, one is mapped
homeomorphically onto the image by F , while the other consists of the crit-
ical points. Let M = Xt1,t2 \ (v1

⋃
v2) and M = F−1(M ′) ⊂ Xt1,t2 be two
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3-manifolds; then F : M → M ′ is a covering. The manifold M is homeo-
morphic to the product of the five punctured sphere times a closed interval
and the manifold M ′ is homeomorphic to the three punctured sphere times
a closed interval. Since fti are symmetric maps and ft2 ∈ H(ft1), then by
Theorem 2 the maps ft1 and ft2 are simply cobordant. Then on M and M ′

there are hyperbolic structures depending on the extremes t1 and t2 such
that F is a Möbius morphism on M. This means that for 0 < t1 < t2 < 1
we can define two hyperbolic 3-dimensional orbifold structures on which
the map F is a Möbius morphism.

iv) The endomorphism F : X → X is a Hausdorff limit (this is a particular
case of Gromov-Hausdorff limit) of Möbius morphisms F : Xt1,t2 → Xt1,t2

for t1 → 0 and t2 → 1.
v) If t �= 0, 1, then we can obtain two functions f0 and f1 from the map

ft using a pinching procedure with respect to peripheral curves. For the
convenience of the reader we sketch this procedure when f1(z) = z3. Fix a
t �= 0, 1 and a Jordan curve γ ∈ C so that α = f−1

t (γ) is a connected Jordan
curve. Then the finite critical values belong to the interior of γ. Let A(γ)
be an annular neighborhood of γ so that A(α) = f−1

t (A(γ)) is an annular
neighborhood of α and ft : A(α) → A(γ) is a covering of degree 3. Let νj
be a sequence of Beltrami differentials supported in A(γ) as constructed in
Section 2.1 and consider the extension of each νj on C by zero outside A(γ).

Let μj(z) = vj(ft)
f ′
t

f ′
t
be the pull-back of νj with respect to ft. Let φj and

ψj be solutions of the Beltrami equation for μj and νj , respectively, with
φj(0) = ψj(0) = 0, φj(∞) = ψj(∞) = ∞, and φ′

t(∞) = ψ′
j(∞) = 1. Then

pj = ψj◦ft◦φ−1
j are polynomials of degree 3.Moreover, φj forms a family of

univalent normalized holomorphic functions defined on a neighborhood of
infinity V ; then ψj also forms a holomorphic family on U = f−1

t (V ). After
taking a suitable subsequence we can assume that φj → φ0 and ψj → ψ0

converge uniformly on compact subsets of U and V , respectively. Moreover,
φ0 and ψ0 are non-constant functions. Hence pj converges to a degree 3

polynomial p0 and, even more, p0|φ0(U) = ψ0 ◦ft ◦φ−1
0 |φ0(U). We claim that

p0(z) = z3, otherwise, p0 has a critical value v0 �= 0,∞. Thus pj also has a
finite critical value vj converging to v0. But vj = ψj(

4
27 (1− t)3t2) belongs

to the bounded component of C\{ψj(A(γ))}. Since ψj converges to ψ0 and
the moduli of the annuli ψj(A(γ)) converges to ∞, we have a contradiction
to v0 �= 0. Thus p0(z) = z3, as claimed.

In the case where f0(z) = z2, we consider a curve γ closed to 0 so that
f−1
t (γ) is the union of two curves α and β. Here ft is a degree 2 covering
on α, and β belongs to the exterior of α. Now we take the normalization
of φj and ψj given by φj(0) = ψj(0) = 0, φ′

j(0) = ψ′
j(0) = 1 and φj(∞) =

ψ(∞) = ∞ and proceed as above.
vi) Now on Xt1,t2 with 0 < t1 < t2 < 1 we put a quasiconformal deforma-

tion converging on the components of the boundary ∂Xt1,t2 to z2 and z3,
respectively, to get a limit. This limit seems to be a sort of double limit con-
verging in Hausdorff topology to a non-uniformizable object. This would
give a non-geometric completion of the respective Teichmüller space. We
suspect that any limit of this type belongs to H(F,C× [0, 1],C× [0, 1]).
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vii) Let J(ft) be the Julia set of ft; then J(F ) =
⋃

t∈[0,1](J(ft), t) ⊂ C×[0, 1], is

a closed set completely invariant under F . Computer experiments suggest
that C× I \ J(F ) consists of two components. The one containing the set
{0} × [0, 1] is simply connected and the other one has infinitely generated
fundamental group. The experiments also suggest that the set J(F ) is a
non-locally connected embedding of S1 × [0, 1] with infinitely many cusps
accumulating to a compact subset of the interior of S1 × [0, 1].

5. Proof of Theorem 3

As the previous discussion showed, the construction of cobordisms between ra-
tional maps often involves the introduction of single univalent components. In this
chapter we look for a construction avoiding these components. We call this type of
construction a pure cobordism.

Let D∞ be the completion of C by adding the circle at infinity ∞ · S1. Then
any monic holomorphic polynomial P of degree d can be extended to the circle at
infinity by the formula ∞· eiθ �→ ∞ · ediθ so that P defines a branched self-covering
P̂ of D∞ and P̂ |∂D∞(z) = zd. Now we identify D∞ with the unit disk D ⊂ C. Let us
consider two monic polynomials P1 and P2, acting on C, then define a finite degree
branched covering F : C → C as follows:

F (z) =

{
P̂1(z) for z ∈ D,

γ ◦ P̂2 ◦ γ(z) for z ∈ C \ D, γ(z) = 1
z .

In holomorphic dynamics the map F is known as the formal mating of the monic
polynomials P1 and P2 (see for example [9] or [11]).

Now we need the following theorem.

Theorem 10. We have two polynomials P1 and P2 of the same degree d > 2 with
canonical holomorphic representatives. Assume one of them, say P2, is symmetric;
then there exists a rational map R such that the following holomorphic coverings
form a hyperbolic cobordism:

• P1 : C \ (P−1
1 (V (P1))) → C \ V (P1),

• P2 : C \ (P−1
2 (V (P2))) → C \ V (P2),

• R : C \ (R−1(V (R))) → C \ V (R).

Proof. Given two polynomials P1and P2 as in the statement of the theorem, we
can assume that P1 and P2 are monic. Let us consider their formal mating F . Let
Q ∈ H(F,C,C) ∩ Rat be a rational map. First note that since F−1(∂D) = ∂D,
then there is a Jordan curve δ ⊂ C such that Q−1(δ) is a connected Jordan curve.
If V (Q) is the set of critical values of Q, then Q is a holomorphic covering of finite
degree from S1 = C \Q−1(V (Q)) to S2 = C \ V (Q).

Let Γ1 < Γ2 be two finitely generated Fuchsian groups uniformizing Q : S1 →
S2 in D. Then we can assume that the map R : D∗/Γ1 → D∗/Γ2 induced by

the inclusion is a rational map satisfying R(z) = Q(z). We claim that the triple
(R,P1, P2) forms a cobordant family.

Indeed, let us apply a pinching procedure to the covering Q, with respect to the
curve δ. Then by Theorem 4, we obtain a Kleinian group Γ2,∞ with an isomorphism
ρ : Γ2 → Γ2,∞ so that Γ2,∞ is a geometrically finite function group with S(Γ2,∞) =
S′
2�T ′

2�T ′′
2 where S′

2 is anticonformally equivalent to S2 and T ′
2 and T ′′

2 are finitely
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punctured Riemannian spheres. Each of them contains only one accidental cusp,
that is, determined by δ.

On the other hand, we have a geometrically finite function group Γ1,∞ satisfying
Γ1,∞ < Γ2,∞. In particular, since R−1(δ) is connected, then Γ1,∞ also is presented
by pinching the group Γ1 with respect to the curve R−1(δ) and contains only one
conjugacy class of an accidental parabolic element. Hence S(Γ1,∞) = S′

1 �T ′
1 �T ′′

1 ,
where S′

1 is an anticonformal copy of S1 and the surfaces T ′
1 and T ′′

1 are finitely
punctured spheres containing only one accidental cusp determined by R−1(δ). This
implies that the map α induced by inclusion is a holomorphic simple covering from
S(Γ1,∞) to S(Γ2,∞) so that α|S′

1
: S′

1 → S′
2 belongs to H(R). As the preimage of

an accidental cusp is an accidental cusp, then the maps α|T ′
1
and α|T ′′

1
are in the

Hurwitz conformal classes of some polynomials, say Q1 and Q2, respectively. By
construction Q1 ∈ H(P1) and Q2 ∈ H(P2) with orientation reversing homeomor-
phisms φ2 and ψ2. Since P2 is symmetric, then the homeomorphisms φ2 and ψ2

also can be chosen to be quasiconformal orientation preserving homeomorphisms.
If φi ◦Qi = Pi ◦ψi, then let μ be the Beltrami differential on S′

2 � T ′
2 � T ′′

2 given in
local coordinates by

μ(z) =

⎧⎪⎨⎪⎩
∂φ1

∂φ1
(z) on T ′

2,
∂φ2

∂φ2
(z) on T ′′

2 ,

0 on S′
2,

and let ν be the pull-back of μ by the orbit projection

π2 : Ω(Γ2,∞) → Ω(Γ2,∞)/Γ2,∞.

If fν is a solution of the Beltrami equation with respect to ν, then the groups
G1 = fν ◦ Γ1,∞ ◦ f−1

ν and G2 = fν ◦ Γ2,∞ ◦ f−1
ν satisfy our claim and finish the

proof of the theorem. �

Let us note that, by Theorem 4, each of the manifolds M(G1) and M(G2),
constructed in the proof of Theorem 10, is homeomorphic to a set U which is the
complement of two open round 3-dimensional balls B1 and B2 in the unit ball B
with finitely many embedded arcs, connecting the boundary components of ∂U ,
removed. See Figure 3.

δ

M(G2)M(G1)

R−1(δ)

σ

R

P1

P2

Figure 3. A sketch of the manifolds M(G1) and M(G2).
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The map σ : M(G1) → M(G2) induced by the inclusion G1 < G2 can be
extended on U as a finite degree branched covering σ∗ : U → U so that in suitable
coordinates σ∗|∂U ∈ CH(R,C,C) ∪ CH(P1,C,C) ∪ CH(P2,C,C). In other words,
in U there are two Möbius orbifold structures which makes σ∗ a Möbius morphism.

Now if τ is the reflection of S3 with respect to the unit sphere, then on W =
U ∪ τ (U) we can extend σ∗ to a finite degree self-covering of W by putting

Σ(z) =

{
σ∗(z) on U,

τ ◦ σ∗ ◦ τ (z), on τ (U).

Then Σ serves as a topological cobordism between P1�P2 and its anticonformal
copies. In what follows, we will show that on W there are two Möbius structures
under which Σ is a Möbius morphism. The idea is to apply the arguments of the
proof of the Brooks orbifold deformation theorem to put onM(G2) a non-orientable
uniformazible orbifold structure ω so that the component S0 ⊂ ∂M(G2) correspond-
ing to the unit sphere consists of the “interior points” in the orbifold structure ω
and other components of ∂M(G2) equipped with ω are Möbius equivalent to the
previous structure.

Then there exists a degree 2 covering β : X → (M(G2), ω) such that X is an
orientable hyperbolic 3-orbifold with four boundary components which are mapped
univalently by β onto ∂M(G2) \ S0.

The following statement is the main lemma of this section, which is an application
of arguments of the proof of the Brooks orbifold deformation theorem (see [5]).

Lemma 11. Let Γ be a geometrically finite Kleinian group without torsion. Let
T ⊂ S(Γ) be a proper subcollection of surfaces. Then there exists a geometrically
finite Kleinian group G such that S(G) is conformally equivalent to T � T ∗ where
T ∗ is an anticonformal copy of T.

Proof. Let T ′ be the complement of the collection T in S(Γ). Our goal is to destroy
the non-empty collection T ′. First, assume that there exists a round disk pattern
K covering just T ′. Let ΓK be the group generated by Γ and the reflections with
respect to all the disks projecting onto the elements of K as in the discussion before
Theorem 6. Then by Theorem 6 the hyperbolic orbifold M(ΓK) has as underlying
space, the manifold MK , where MK is homeomorphic to M(Γ). Let GK < ΓK be
the subgroup of orientation preserving elements of ΓK ; then GK = ΓK ∩PSL(2,C)
is a normal order two subgroup of ΓK containing Γ. By the remark after Theorem
6, if a component Ω0 ∈ Ω(Γ) covers an element of T , then the stabilizer of Ω0 in
GK coincides with the stabilizer of Ω0 in Γ. Then M(GK) admits an anticonformal
involution τ and M(ΓK) = M(GK)/τ. Hence ∂M(GK) = T � T ∗, where T ∗ is an
anticonformal copy of T .

To finish the proof we have to justify the existence of the patternK. By Theorem
7 there exists a quasiconformal homeomorphism h and a group Γh = h ◦ Γ ◦ h−1

admitting a disk pattern covering the whole surface S(Γh).
Let us consider a subpattern K ′ ⊂ K precisely covering the collection h(T ′) ⊂

S(Γh) and construct a group Gh which uniformizes the surfaces S(Gh) = h(T ) �
(h(T ))∗. Taking a suitable quasiconformal deformation for Gh we obtain a group
G, as claimed. �

The lemma above allows to produce a hyperbolic orbifold structure on a double
of the manifold M(Γ) with respect to a complementary collection T ′. In other
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words, with this lemma one can endow an orbifold structure on the manifold W.
The following theorem shows that we can put other orbifold hyperbolic structures
on W in such a way that the map Σ becomes a Möbius morphism between these
structures.

Theorem 12. The family of canonical holomorphic representatives of any collec-
tion of four polynomials in general position of the same degree d > 2 forms a
hyperbolic cobordism.

Proof. Take any pair of polynomials P1 and P2 from the given four. By Theorem
10, there exists a rational map R such that R�P1�P2 forms a cobordant family of
coverings. Let Γ1 < Γ2 be the Kleinian groups realizing this cobordism, that is, the
α : MΓ1

→ MΓ2
so that α maps S(Γ1) = V0�V1�V2 onto S(Γ2) = U0�U1�U2 and

(α, ∂M(Γ1), ∂M(Γ2)) belongs to the Hurwitz class CH(R,P1, P2). Let H2 be the
geometrically finite group with S(H2) = (U1�U2)�((U1)

∗�(U2)
∗) given by Lemma

11; here again (U1)
∗ and (U2)

∗ are anticonformal copies of U1 and U2, respectively.
We claim that there exists a finite index subgroup H1 < H2 with S(H1) =

(V1 � V2) � ((V1)
∗ � (V2)

∗) and a projection induced by inclusion of groups

β : M(H1) → M(H2)

is so that β|Vi
is conformally equivalent to Pi, for i = 1, 2, and β|(Vi)∗ are anti-

conformal copies of Pi, respectively. Indeed, by the Brooks orbifold deformation
theorem as used in Lemma 11 we can assume that the group Γ2 admits a pattern
K which covers only the surface U0.

Since α is a Möbius morphism, then K ′ = α−1(K) ⊂ V0 is also a pattern on
S(Γ1) completely covering just the surface V0. Hence the group G1, generated
by Γ1 and the reflections with respect to the boundaries of all round disks which
project on all elements of K ′, is a finite index subgroup of the group G2, where
G2 is generated by Γ2 and the reflections with respect to the boundaries of all
disks projecting on all elements of K. In fact, these families of disks for Γ1 and Γ2

coincide.
Therefore the orientation preserving subgroups H1 = G1 ∩PSL(2,C) and H2 =

G2 ∩ PSL(2,C) are geometrically finite Kleinian groups such that H1 has finite
index in H2. Then the groups H1 < H2 are the desired groups, as claimed.

Let us note that the anticonformal copies of P1 and P2 belong to the Hurwitz
classes of the polynomials P3 and P4. Indeed all polynomials in general position,
of the same degree, belong to the same Hurwitz class. Hence, after a suitable
quasiconformal deformation of the pair H1 and H2 we complete the proof of the
theorem. �

Choose a surface S ⊂ S(G2) together with a pattern precisely covering S. Re-
peating the construction above, we construct a cobordism between the canonical
representatives of six polynomials of the same degree in general position. The
iteration of this procedure shows the following statement.

If the canonical holomorphic representatives of a collection of polynomials
P1, . . . , Pn in general position of the same degree d > 2 forms a hyperbolic cobor-
dism, then for every k < n, the canonical holomorphic representatives of every
collection of 2(n − k) polynomials in general position and of degree d forms a hy-
perbolically cobordant family. An induction argument over Theorems 12 and 2
completes the proof of Theorem 3.
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Remark. Unfortunately, we were not able to prove the following desirable statement:
Every finite collection of non-univalent rational (polynomial) maps forms a cobor-

dant family.
This is not clear even in the case of a single rational map R (for more details on

this problem see [3]).
But if we drop the geometrically finiteness condition in the definition of cobor-

dism, then, as it was shown in [3], in the case of a single rational map R the
statement above is always true, the corresponding uniformizing group is totally de-
generated, and the respective Möbius morphism is Hurwitz equivalent to the radial
extension of R in the unit 3-dimensional ball.

6. On conformal Hurwitz classes and sandwich semigroups

According to the discussion above it is interesting to know when two given ratio-
nal maps belong to the same conformal or anticonformal Hurwitz class or, better,
when these maps are conformally or anticonformally conjugated. It turns out that
the answer is purely algebraic and does not require any dynamical information. We
give a precise answer using sandwich products induced by the given rational maps.
Also we suggest another point of view on Hurwitz classes of rational maps as mini-
mal representation spaces of semigroups of holomorphic correspondences associated
to the given holomorphic coverings.

The results in this section develop ideas in [3], and the Schreier representation
of semigroups as treated in [2]. We start with a brief introduction to Schreier
representations.

Definition. Let X be a topological space and let End(X) be the semigroup of
continuous endomorphisms of the space X. Then

(1) End(X) is a topological semigroup.
(2) X canonically embeds in End(X) as the ideal I of constant endomorphisms.
(3) I is the unique minimal bi-ideal (left and right) consisting of idempotents.
(4) (Schreier lemma) Let G < End(X) be a subsemigroup with G ∩ I = A �= ∅

and let ρ : G → End(X) be a homomorphism. Then there exists a map
f : A → X such that f(g(x)) = ρ(g)(f(x)) for all x ∈ A and g ∈ G, here
f(x) := ρ(x). In other words, every homomorphism is generated by a map.
Even more, the map f is continuous if and only if ρ is continuous, and f
is a homeomorphism if and only if ρ is a continuous isomorphism onto its
image. We say that ρ is orientation preserving or non-orientable, depending
on whether f has the corresponding property.

(5) Let f : Y → X be a continuous map between topological spaces. Then
the set G of all continuous maps g : X → Y can be transformed into a
semigroup with the product:

g1 ∗f g2 = g1 ◦ f ◦ g2.
This product is called the sandwich product with respect to f and Gf =
〈G, ∗f 〉 is called the sandwich semigroup. If f is not invertible, then Gf

does not contain a unit.

The following theorem appears in [2]. For convenience we include the proof.

Theorem 13. Let R1 : C → C and R2 : C → C be two rational maps, and
let G1 and G2 be sandwich semigroups of rational maps with respect to R1 and
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R2, respectively. If ρ : G1 → G2 is an isomorphism, then there exist an element
γ ∈ PSL(2,C), and a bijection φ : C → C so that ρ(R) = φ ◦R ◦ φ−1 ◦ γ for every
rational map R.

We say that the homomorphism ρ is orientation preserving or non-orientable
depending on whether φ has the same property.

Proof. Let f = ρ|C be the restriction of ρ to the constants; then f(C) ⊂ C. Indeed
for a suitable constant c ∈ C then c ∗R1

Q = c and hence ρ(c) ∗R2
ρ(Q) = ρ(c) for

every rational map Q. Since ρ is an isomorphism ρ(Q), then ρ(c) is a constant.
Also f is a bijection.

Now we show that ρ(PSL(2,C)) = PSL(2,C). Indeed, since for every rational
maps R and Q we have ρ(R ∗R1

Q) = ρ(R) ∗R2
ρ(Q), taking Q = c a constant

then f(R ◦ R1(c)) = ρ(R) ◦ R2(f(c)). As f is invertible we have deg(R ◦ R1) =
deg(ρ(R) ◦R2). Similarly for ρ−1 we have

f−1(R ◦R2(c)) = ρ−1(R) ◦R1(f
−1(c))

and

deg(R ◦R2) = deg(ρ−1(R) ◦R1).

If R ∈ PSL(2,C), then deg(R1) = deg(R◦R1) = deg(ρ(R)) ·deg(R2) = deg(ρ(R)) ·
deg(ρ−1(R)) · deg(R1) which implies deg(ρ(R)) = 1.

Let γ = ρ(Id) so γ ∈ PSL(2,C). Consider the map τγ : G2 → 〈Rat, ∗γ◦R2
〉 given

by τγ(R) = R ◦ γ−1. Then τγ is an isomorphism of the sandwich semigroup, which
follows from direct computation:

τγ(R ∗R2
Q) = τγ(R ◦R2 ◦Q) = R ◦R2 ◦Q ◦ γ−1 = τγ(R) ∗γ◦R2

τγ(Q).

Then Φ : τγ ◦ ρ : G1 → 〈Rat, ∗γ◦R2
〉 is an isomorphism satisfying Φ(Id) = Id . If

R = c is a constant, then Φ(c) = ρ(c)◦γ = ρ(c) = f(c).Also Φ(R1) = Φ(Id ∗R1
Id) =

γ ◦R2, and hence for every c ∈ C

f(R1(c)) = Φ(Id ∗R1
c) = γ ◦R2(f(c))

which implies R2 = γ−1 ◦ f ◦R1 ◦ f−1. We have for every Q ∈ Rat(C) and c ∈ C,

f(Q ◦R1(c)) = Φ(Q ∗R1
c) = Φ(Q) ◦ γ ◦R2(f(c)) = Φ(Q) ◦ f ◦R1(c).

Then

Q ◦R1(c) = f−1 ◦ Φ(Q) ◦ f ◦R1(c)

and so

Φ(Q) = f ◦Q ◦ f−1

but Φ(Q) = τγ ◦ ρ(Q) or ρ(Q) = Φ(Q) ◦ γ, as we wanted to prove. �

As an immediate corollary we have the following.

Corollary 14. If ρ : G1 → G2 is an isomorphism as in Theorem 12 and ρ(Id) = Id,
then there exists a bijection f : C → C such that

ρ(R) = f ◦R ◦ f−1.

The next theorem is the main result of this section.
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Theorem 15. Let R1 and R2 be non-constant rational maps and let G1 and G2

be the respective sandwich semigroups on Rat(C). Then

(1) The pair R1, R2 belongs to the same conformal Hurwitz class if and only if
there exists a continuous orientation preserving isomorphism ρ : G1 → G2.
Moreover, ρ(Id) = Id if and only if R1 is PSL(2,C) conjugated to R2.

(2) A continuous isomorphism ρ reverses orientation if and only if R1 is an
anticonformal copy of R2. Moreover ρ(Id) = Id if and only if R1 is anti-
conformally conjugated to R2.

Proof. Part 1. Assume that R1 and R2 belong to the same conformal Hurwitz
class and let h, g ∈ PSL(2,C) be so that R2 = g−1 ◦ R1 ◦ h. Then the map
ρ(R) = h−1 ◦ R ◦ g defines a continuous orientation preserving isomorphism from
G1 to G2. Indeed, from direct calculation:

ρ(R ∗R1
Q) = h−1 ◦R ◦R1 ◦Q ◦ g

= ρ(R) ∗R2
ρ(Q).

Now if ρ : G1 → G2 is an orientation preserving isomorphism, then by Theorem 12
there exists a γ ∈ PSL(2,C) and a bijection f : C → C so that ρ(Q) = f ◦Q◦f−1◦γ
for every rational map Q. By conjugation, f defines an automorphism of Rat(C)
with composition as a product. By Proposition 8 in [2], the map f belongs to the
group generated by PSL(2,C) and the absolute Galois group. Since ρ is continuous
and orientation preserving we have f ∈ PSL(2,C). Now assume ρ(Id) = Id; then
by Corollary 14, ρ(R) = f ◦R◦f−1 and f ∈ PSL(2,C) and ρ(R1) = f ◦R1 ◦f−1 =
ρ(Id ∗R1

Id) = R2.
Part 2. If ρ is continuous and orientation reversing, then f ∈ PSL(2,C) and the

proof goes as Part 1. �

In conclusion we note the following.
First, it is possible to show that every continuous semigroup product on Rat(C)

which is continuously isomorphic to a sandwich product is a sandwich product
itself. So the classes of continuous isomorphisms of sandwich semigroups on Rat(C)
correspond to the conformal Hurwitz classes of rational maps.

Second, that it is not clear at all how to associate the algebraic characterization
of the conformal Hurwitz class of symmetric rational maps with the geometric
cobordisms point of view.

Finally, similar ideas allow us to consider the Hurwitz space as a representation
space of a special class of holomorphic correspondences. This follows using results
from [2] with [3]. So we can construct a Teichmüller space of correspondences of the
form R−1 ◦ R, called the deck correspondence associated to R. From [3] it follows
that the Speisser class of R fibers over the moduli space of the deck with fiber
equivalent to the conformal Hurwitz class of R. Let GR = 〈R−1 ◦ R,C〉 be the
semigroup of holomorphic correspondences generated by the deck correspondence
associated to R and constant maps. Consider the space X of all representations of
GR into the semigroup of holomorphic correspondences on C. Then using results
from [2], one can consider the Speisser class of a rational map R as a subspace of
the connected component of X containing the identity representation.
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