Cantor bouquets in spiders’ webs
HTML articles powered by AMS MathViewer
- by Yannis Dourekas
- Conform. Geom. Dyn. 24 (2020), 1-28
- DOI: https://doi.org/10.1090/ecgd/346
- Published electronically: January 7, 2020
- PDF | Request permission
Abstract:
For many transcendental entire functions, the escaping set has the structure of a Cantor bouquet, consisting of uncountably many disjoint curves. Rippon and Stallard showed that there are many functions for which the escaping set has a new connected structure known as an infinite spider’s web. We investigate a connection between these two topological structures for a certain class of sums of exponentials.References
- Jan M. Aarts and Lex G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897–918. MR 1182980, DOI 10.1090/S0002-9947-1993-1182980-3
- I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252–256. MR 226009, DOI 10.1007/BF01110294
- I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563–576. MR 759304, DOI 10.1112/plms/s3-49.3.563
- Krzysztof Barański, Xavier Jarque, and Lasse Rempe, Brushing the hairs of transcendental entire functions, Topology Appl. 159 (2012), no. 8, 2102–2114. MR 2902745, DOI 10.1016/j.topol.2012.02.004
- Walter Bergweiler and Bogusława Karpińska, On the Hausdorff dimension of the Julia set of a regularly growing entire function, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 3, 531–551. MR 2609307, DOI 10.1017/S0305004109990491
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
- Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 8, 1517–1534. MR 1721835, DOI 10.1142/S0218127499001061
- Michael Brin and Garrett Stuck, Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002. MR 1963683, DOI 10.1017/CBO9780511755316
- Robert L. Devaney and Folkert Tangerman, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 489–503. MR 873428, DOI 10.1017/S0143385700003655
- Robert L. Devaney and MichałKrych, Dynamics of $\textrm {exp}(z)$, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, DOI 10.1017/S014338570000225X
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- J. W. Osborne, Spiders’ webs and locally connected Julia sets of transcendental entire functions, Ergodic Theory Dynam. Systems 33 (2013), no. 4, 1146–1161. MR 3082543, DOI 10.1017/S0143385712000259
- G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. II, Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Springer Study Edition, Springer-Verlag, New York-Heidelberg, 1976. Theory of functions, zeros, polynomials, determinants, number theory, geometry. MR 0465631, DOI 10.1007/978-1-4757-6292-1
- P. J. Rippon and G. M. Stallard, Fast escaping points of entire functions, Proc. Lond. Math. Soc. (3) 105 (2012), no. 4, 787–820. MR 2989804, DOI 10.1112/plms/pds001
- P. J. Rippon and G. M. Stallard, On sets where iterates of a meromorphic function zip towards infinity, Bull. London Math. Soc. 32 (2000), no. 5, 528–536. MR 1767705, DOI 10.1112/S002460930000730X
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
- David J. Sixsmith, Julia and escaping set spiders’ webs of positive area, Int. Math. Res. Not. IMRN 19 (2015), 9751–9774. MR 3431610, DOI 10.1093/imrn/rnu245
- E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford University Press, Oxford, 1939. MR 3728294
Bibliographic Information
- Yannis Dourekas
- Affiliation: School of Mathematics and Statistics, Open University, Milton Keynes MK7 6AA, United Kingdom
- Email: ioandour@gmail.com
- Received by editor(s): September 20, 2019
- Published electronically: January 7, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Conform. Geom. Dyn. 24 (2020), 1-28
- MSC (2010): Primary 37F10
- DOI: https://doi.org/10.1090/ecgd/346
- MathSciNet review: 4047936