## A locally hyperbolic 3-manifold that is not homotopy equivalent to any hyperbolic 3-manifold

HTML articles powered by AMS MathViewer

- by Tommaso Cremaschi PDF
- Conform. Geom. Dyn.
**24**(2020), 118-130 Request permission

## Abstract:

We construct a locally hyperbolic 3-manifold $M$ such that $\pi _1(M)$ has no divisible subgroups. We then show that $M$ is not homotopy equivalent to any complete hyperbolic manifold.## References

- Ian Agol,
*Topology of hyperbolic 3-manifolds*, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–University of California, San Diego. MR**2698165** - Francis Bonahon,
*Bouts des variétés hyperboliques de dimension $3$*, Ann. of Math. (2)**124**(1986), no. 1, 71–158 (French). MR**847953**, DOI 10.2307/1971388 - Riccardo Benedetti and Carlo Petronio,
*Lectures on hyperbolic geometry*, Universitext, Springer-Verlag, Berlin, 1992. MR**1219310**, DOI 10.1007/978-3-642-58158-8 - Richard D. Canary,
*A covering theorem for hyperbolic $3$-manifolds and its applications*, Topology**35**(1996), no. 3, 751–778. MR**1396777**, DOI 10.1016/0040-9383(94)00055-7 - Richard D. Canary,
*Marden’s tameness conjecture: history and applications*, Geometry, analysis and topology of discrete groups, Adv. Lect. Math. (ALM), vol. 6, Int. Press, Somerville, MA, 2008, pp. 137–162. MR**2464394** - Danny Calegari and David Gabai,
*Shrinkwrapping and the taming of hyperbolic 3-manifolds*, J. Amer. Math. Soc.**19**(2006), no. 2, 385–446. MR**2188131**, DOI 10.1090/S0894-0347-05-00513-8 - Richard D. Canary and Darryl McCullough,
*Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups*, Mem. Amer. Math. Soc.**172**(2004), no. 812, xii+218. MR**2096234**, DOI 10.1090/memo/0812 - Tommaso Cremaschi,
*Hyperbolization on infinite type 3-manifolds*, arXiv:1904.11359 (2017). - Kelly Delp, Diane Hoffoss, and Jason Fox Manning,
*Problems in groups, geometry, and three-manifolds*. http://arxiv.org/pdf/1512.04620.pdf, 2006. - Michael Freedman, Joel Hass, and Peter Scott,
*Least area incompressible surfaces in $3$-manifolds*, Invent. Math.**71**(1983), no. 3, 609–642. MR**695910**, DOI 10.1007/BF02095997 - Allen Hatcher,
*Algebraic topology*, Cambridge University Press, Cambridge, 2002. MR**1867354** - Allen Hatcher,
*Basic notes on 3-manifolds*. http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf, 2007. - John Hempel,
*$3$-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619** - Morris W. Hirsch,
*Differential topology*, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR**1336822** - William Jaco,
*Lectures on three-manifold topology*, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR**565450**, DOI 10.1090/cbms/043 - Klaus Johannson,
*Homotopy equivalences of $3$-manifolds with boundaries*, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR**551744**, DOI 10.1007/BFb0085406 - William Jaco and J. Hyam Rubinstein,
*PL minimal surfaces in $3$-manifolds*, J. Differential Geom.**27**(1988), no. 3, 493–524. MR**940116** - William Jaco and Peter B. Shalen,
*A new decomposition theorem for irreducible sufficiently-large $3$-manifolds*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 71–84. MR**520524** - Michael Kapovich,
*Hyperbolic manifolds and discrete groups*, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 2001 edition. MR**2553578**, DOI 10.1007/978-0-8176-4913-5 - A. Marden,
*Outer circles*, Cambridge University Press, Cambridge, 2007. An introduction to hyperbolic 3-manifolds. MR**2355387**, DOI 10.1017/CBO9780511618918 - Grigori Perelman,
*Finite extinction time for the solutions to the Ricci flow on certain three-manifolds*. https://arxiv.org/pdf/math/0307245.pdf, 2003. - Grigori Perelman,
*Ricci flow with surgery on three-manifolds*. https://arxiv.org/abs/math/0303109, 2003. - Grigori Perelman,
*The entropy formula for the Ricci flow and its geometric applications*. https://arxiv.org/abs/math/0211159, 2003. - J. H. Rubinstein and G. A. Swarup,
*On Scott’s core theorem*, Bull. London Math. Soc.**22**(1990), no. 5, 495–498. MR**1082023**, DOI 10.1112/blms/22.5.495 - G. P. Scott,
*Compact submanifolds of $3$-manifolds*, J. London Math. Soc. (2)**7**(1973), 246–250. MR**326737**, DOI 10.1112/jlms/s2-7.2.246 - Luke Harris and Peter Scott,
*The uniqueness of compact cores for $3$-manifolds*, Pacific J. Math.**172**(1996), no. 1, 139–150. MR**1379290**, DOI 10.2140/pjm.1996.172.139 - Peter B. Shalen,
*Infinitely divisible elements in $3$-manifold groups*, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 293–335. MR**0375280** - Jonathan Simon,
*Compactification of covering spaces of compact $3$-manifolds*, Michigan Math. J.**23**(1976), no. 3, 245–256 (1977). MR**431176** - William B. Thurston,
*Geometry and Topology of 3-manifolds*. Princeton Mathematics Department Lecture Notes. http://library.msri.org/books/gt3m/. - William P. Thurston,
*Three-dimensional geometry and topology. Vol. 1*, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR**1435975**, DOI 10.1515/9781400865321 - William P. Thurston,
*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, DOI 10.1090/S0273-0979-1982-15003-0 - Friedhelm Waldhausen,
*On irreducible $3$-manifolds which are sufficiently large*, Ann. of Math. (2)**87**(1968), 56–88. MR**224099**, DOI 10.2307/1970594

## Additional Information

**Tommaso Cremaschi**- Affiliation: Department of Mathematics, University of Southern California, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467
- MR Author ID: 1287432
- Email: cremasch@usc.edu
- Received by editor(s): December 24, 2018
- Received by editor(s) in revised form: November 12, 2019
- Published electronically: June 17, 2020
- Additional Notes: The author gratefully acknowledges support from the U.S. National Science Foundation grant DMS-1564410: Geometric Structures on Higher Teichmüller Spaces.
- © Copyright 2020 American Mathematical Society
- Journal: Conform. Geom. Dyn.
**24**(2020), 118-130 - DOI: https://doi.org/10.1090/ecgd/350
- MathSciNet review: 4127908