Sublinear quasiconformality and the large-scale geometry of Heintze groups
HTML articles powered by AMS MathViewer
- by Gabriel Pallier
- Conform. Geom. Dyn. 24 (2020), 131-163
- DOI: https://doi.org/10.1090/ecgd/352
- Published electronically: June 19, 2020
- PDF | Request permission
Abstract:
This article analyzes sublinearly quasisymmetric homeomorphisms (generalized quasisymmetric mappings), and draws applications to the sublinear large-scale geometry of negatively curved groups and spaces. It is proven that those homeomorphisms lack analytical properties but preserve a conformal dimension and appropriate function spaces, distinguishing certain (nonsymmetric) Riemannian negatively curved homogeneous spaces, and Fuchsian buildings, up to sublinearly biLipschitz equivalence (generalized quasi-isometry).References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Mario Bonk and Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219–246. MR 2116315, DOI 10.2140/gt.2005.9.219
- Marc Bourdon and Bruce Kleiner, Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn. 7 (2013), no. 1, 39–107. MR 3019076, DOI 10.4171/GGD/177
- M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), no. 2, 245–268 (French, with English and French summaries). MR 1445387, DOI 10.1007/PL00001619
- Marc Bourdon, Sur les immeubles fuchsiens et leur type de quasi-isométrie, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 343–364 (French, with English and French summaries). MR 1756974, DOI 10.1017/S014338570000016X
- Marc Bourdon, Une caractérisation algébrique des homéomorphismes quasi-Möbius, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 235–250 (French, with English and French summaries). MR 2297889
- Marc Bourdon and Hervé Pajot, Cohomologie $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85–108 (French, with English summary). MR 1979183, DOI 10.1515/crll.2003.043
- Zoltán Buczolich and Stéphane Seuret, Homogeneous multifractal measures with disjoint spectrum and monohölder monotone functions, Real Anal. Exchange 40 (2014/15), no. 2, 277–289. MR 3499765, DOI 10.14321/realanalexch.40.2.0277
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- Pierre-Emmanuel Caprace, Yves Cornulier, Nicolas Monod, and Romain Tessera, Amenable hyperbolic groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 11, 2903–2947. MR 3420526, DOI 10.4171/JEMS/575
- Yves de Cornulier, Dimension of asymptotic cones of Lie groups, J. Topol. 1 (2008), no. 2, 342–361. MR 2399134, DOI 10.1112/jtopol/jtm013
- Yves de Cornulier, Asymptotic cones of Lie groups and cone equivalences, Illinois J. Math. 55 (2011), no. 1, 237–259 (2012). MR 3006687
- Yves Cornulier, Commability and focal locally compact groups, Indiana Univ. Math. J. 64 (2015), no. 1, 115–150. MR 3320521, DOI 10.1512/iumj.2015.64.5441
- Yves de Cornulier, On the quasi-isometric classification of locally compact groups, New directions in locally compact groups, London Math. Soc. Lecture Note Ser., vol. 447, Cambridge Univ. Press, Cambridge, 2018, pp. 275–342. MR 3793294
- Yves Cornulier, On sublinear bilipschitz equivalence of groups, Ann. ENS. 52 (2019), no. 5, 1201–1242.
- Matias Carrasco Piaggio, Orlicz spaces and the large scale geometry of Heintze groups, Math. Ann. 368 (2017), no. 1-2, 433–481. MR 3651580, DOI 10.1007/s00208-016-1430-1
- Matias Carrasco Piaggio and Emiliano Sequeira, On quasi-isometry invariants associated to a Heintze group, Geom. Dedicata 189 (2017), 1–16. MR 3667336, DOI 10.1007/s10711-016-0214-9
- Enrico Le Donne and Sebastiano Nicolussi Golo, Metric Lie groups admitting dilations, arXiv:1901.02559 (2019).
- J. Dydak and C. S. Hoffland, An alternative definition of coarse structures, Topology Appl. 155 (2008), no. 9, 1013–1021. MR 2401211, DOI 10.1016/j.topol.2008.01.002
- Tullia Dymarz and Irine Peng, Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces, Geom. Dedicata 152 (2011), 129–145. MR 2795238, DOI 10.1007/s10711-010-9548-x
- A. N. Dranishnikov and J. Smith, On asymptotic Assouad-Nagata dimension, Topology Appl. 154 (2007), no. 4, 934–952. MR 2294641, DOI 10.1016/j.topol.2006.10.010
- G. A. Edgar, Packing measure in general metric space, Real Anal. Exchange 26 (2000/01), no. 2, 831–852. MR 1844397, DOI 10.2307/44154081
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- M. Gromov and P. Pansu, Rigidity of lattices: an introduction, Geometric topology: recent developments (Montecatini Terme, 1990) Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 39–137. MR 1168043, DOI 10.1007/BFb0094289
- Damien Gaboriau and Frédéric Paulin, Sur les immeubles hyperboliques, Geom. Dedicata 88 (2001), no. 1-3, 153–197 (French, with English summary). MR 1877215, DOI 10.1023/A:1013168623727
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Carolyn S. Gordon and Edward N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988), no. 1, 245–269. MR 936815, DOI 10.1090/S0002-9947-1988-0936815-X
- Ursula Hamenstädt, A new description of the Bowen-Margulis measure, Ergodic Theory Dynam. Systems 9 (1989), no. 3, 455–464. MR 1016663, DOI 10.1017/S0143385700005095
- Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34. MR 353210, DOI 10.1007/BF01344139
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Sa’ar Hersonsky and Frédéric Paulin, On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997), no. 3, 349–388. MR 1476054, DOI 10.1007/s000140050022
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- J. W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Z. 15 (1922), no. 1, 211–225 (German). MR 1544569, DOI 10.1007/BF01494395
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- G. D. Mostow, The rigidity of locally symmetric spaces, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 187–197. MR 0419683
- John M. Mackay and Jeremy T. Tyson, Conformal dimension, University Lecture Series, vol. 54, American Mathematical Society, Providence, RI, 2010. Theory and application. MR 2662522, DOI 10.1090/ulect/054
- Gabriel Pallier, Large-scale sublinearly Lipschitz geometry of hyperbolic spaces, arXiv:1801.05163 (2018) (to appear in J. Inst. Math. Jussieu).
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI 10.5186/aasfm.1989.1424
- Xiangdong Xie, Quasisymmetric homeomorphisms on reducible Carnot groups, Pacific J. Math. 265 (2013), no. 1, 113–122. MR 3095115, DOI 10.2140/pjm.2013.265.113
- Frédéric Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2) 54 (1996), no. 1, 50–74 (French, with French summary). MR 1395067, DOI 10.1112/jlms/54.1.50
- Irine Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups I, Geom. Topol. 15 (2011), no. 4, 1883–1925. MR 2860983, DOI 10.2140/gt.2011.15.1883
- Hervé Pajot and Emmanuel Russ, Analyse dans les espaces métriques, Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)], EDP Sciences, Les Ulis; CNRS Éditions, Paris, 2018 (French). MR 3791828
- John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. MR 2007488, DOI 10.1090/ulect/031
- Emiliano Sequeira, Relative $L^p$-cohomology and Heintze groups, arXiv:1912.03520 (2019).
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548. MR 1642158
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
- André Weil, Sur les espaces à structure uniforme et sur la topologie générale, Actualit’es Sci Ind. (551), Paris, 1937.
- André Weil, L’intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 869, Hermann & Cie, Paris, 1940 (French). [This book has been republished by the author at Princeton, N. J., 1941.]. MR 0005741
- Xiangdong Xie, Quasisymmetric maps on the boundary of a negatively curved solvable Lie group, Math. Ann. 353 (2012), no. 3, 727–746. MR 2923947, DOI 10.1007/s00208-011-0700-1
- Xiangdong Xie, Large scale geometry of negatively curved $\Bbb {R}^n\rtimes \Bbb {R}$, Geom. Topol. 18 (2014), no. 2, 831–872. MR 3180486, DOI 10.2140/gt.2014.18.831
Bibliographic Information
- Gabriel Pallier
- Affiliation: Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
- MR Author ID: 1181101
- ORCID: 0000-0002-6219-7262
- Email: gabriel.pallier@math.u-psud.fr, gabriel.pallier@dm.unipi.it
- Received by editor(s): May 20, 2019
- Received by editor(s) in revised form: September 14, 2019, and January 15, 2020
- Published electronically: June 19, 2020
- Additional Notes: The author was supported by ANR-15-CE40-0018SRGI and by ERC Starting Grant 713998 GeoMeG
- © Copyright 2020 American Mathematical Society
- Journal: Conform. Geom. Dyn. 24 (2020), 131-163
- MSC (2010): Primary 20F67, 30L10; Secondary 20F69, 53C23, 53C30, 22E25
- DOI: https://doi.org/10.1090/ecgd/352
- MathSciNet review: 4127909