Faber and Grunsky operators corresponding to bordered Riemann surfaces
HTML articles powered by AMS MathViewer
- by Mohammad Shirazi
- Conform. Geom. Dyn. 24 (2020), 177-201
- DOI: https://doi.org/10.1090/ecgd/355
- Published electronically: September 16, 2020
- PDF | Request permission
Abstract:
Let $\mathfrak {R}$ be a compact Riemann surface of finite genus $\mathfrak {g}>0$ and let $\Sigma$ be the subsurface obtained by removing $n\geq 1$ simply connected regions $\Omega _1^+, \dots , \Omega _n^+$ from $\mathfrak {R}$ with non-overlapping closures. Fix a biholomorphism $f_k$ from the unit disc onto $\Omega _k^+$ for each $k$ and let $\mathbf {f}=(f_1, \dots , f_n)$. We assign a Faber and a Grunsky operator to $\mathfrak {R}$ and $\mathbf {f}$ when all the boundary curves of $\Sigma$ are quasicircles in $\mathfrak {R}$. We show that the Faber operator is a bounded isomorphism and the norm of the Grunsky operator is strictly less than one for this choice of boundary curves. A characterization of the pull-back of the holomorphic Dirichlet space of $\Sigma$ in terms of the graph of the Grunsky operator is provided.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911, DOI 10.1515/9781400874538
- S. Bergman and M. Schiffer, Kernel functions and conformal mapping, Compositio Math. 8 (1951), 205–249. MR 39812
- Omar El-Fallah, Karim Kellay, Javad Mashreghi, and Thomas Ransford, A primer on the Dirichlet space, Cambridge Tracts in Mathematics, vol. 203, Cambridge University Press, Cambridge, 2014. MR 3185375
- H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765, DOI 10.1007/978-1-4612-2034-3
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- C. Pommerenke, Univalent Functions, no. 229 in Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 1975.
- D. Radnell, E. Schippers, M. Shirazi, and W. Staubach, Schiffer Operator and Calculation of a Determinant Line in Conformal Field Theory, submitted.
- David Radnell, Eric Schippers, and Wolfgang Staubach, Dirichlet spaces of domains bounded by quasicircles, Commun. Contemp. Math. 22 (2020), no. 3, 1950022, 22. MR 4082224, DOI 10.1142/S0219199719500226
- H. L. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. Math. Soc. 73 (1952), 40–94. MR 49396, DOI 10.1090/S0002-9947-1952-0049396-8
- H. L. Royden, Function theory on compact Riemann surfaces, J. Analyse Math. 18 (1967), 295–327. MR 214757, DOI 10.1007/BF02798051
- Menahem Schiffer, The kernel function of an orthonormal system, Duke Math. J. 13 (1946), 529–540. MR 19115
- M. Schiffer and G. Schober, Coefficient problems and generalized Grunsky inequalities for schlicht functions with quasiconformal extensions, Arch. Rational Mech. Anal. 60 (1975/76), no. 3, 205–228. MR 404609, DOI 10.1007/BF01789257
- Menahem Schiffer and Donald C. Spencer, Functionals of finite Riemann surfaces, Princeton University Press, Princeton, N. J., 1954. MR 0065652
- E. Schippers, M. Shirazi, and W. Staubach, Schiffer comparison operators and approximations on Riemann surfaces bordered by quasicircles, to appear in J. Geom. Anal.
- Eric Schippers and Wolfgang Staubach, Riemann boundary value problem on quasidisks, Faber isomorphism and Grunsky operator, Complex Anal. Oper. Theory 12 (2018), no. 2, 325–354. MR 3756161, DOI 10.1007/s11785-016-0598-4
- E. Schippers and W. Staubach, Plemelj-Sokhotski isomorphism for quasicircles in Riemann surfaces and the Schiffer operators, Math. Ann. doi:10.1007/s00208-019-01922-4, 2019.
- Eric Schippers and Wolfgang Staubach, Transmission of harmonic functions through quasicircles on compact Riemann surfaces, Ann. Acad. Sci. Fenn. Math. 45 (2020), no. 2, 1111–1134. MR 4112278, DOI 10.5186/aasfm.2020.4559
- Hiroshige Shiga, On analytic and geometric properties of Teichmüller spaces, J. Math. Kyoto Univ. 24 (1984), no. 3, 441–452. MR 766636, DOI 10.1215/kjm/1250521274
- YuLiang Shen, Faber polynomials with applications to univalent functions with quasiconformal extensions, Sci. China Ser. A 52 (2009), no. 10, 2121–2131. MR 2550270, DOI 10.1007/s11425-009-0062-2
- Yu-liang Shen, On Grunsky operator, Sci. China Ser. A 50 (2007), no. 12, 1805–1817. MR 2390490, DOI 10.1007/s11425-007-0141-1
- Yuliang Shen, The asymptotic Teichmüller space and the asymptotic Grunsky map, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 3, 651–672. MR 2651378, DOI 10.1017/S0308210509000560
- Leon A. Takhtajan and Lee-Peng Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861, viii+119. MR 2251887, DOI 10.1090/memo/0861
- I. V. Žuravlev, Univalent functions and Teichmüller spaces, Dokl. Akad. Nauk SSSR 250 (1980), no. 5, 1047–1050 (Russian). MR 561570
Bibliographic Information
- Mohammad Shirazi
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, Canada
- ORCID: 0000-0002-7311-6085
- Email: shirazim@myumanitoba.ca, mohammad.shirazi@mail.mcgill.ca
- Received by editor(s): April 6, 2020
- Received by editor(s) in revised form: July 21, 2020
- Published electronically: September 16, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Conform. Geom. Dyn. 24 (2020), 177-201
- MSC (2020): Primary 30F15; Secondary 30C35
- DOI: https://doi.org/10.1090/ecgd/355
- MathSciNet review: 4150224