Real entropy rigidity under quasi-conformal deformations
HTML articles powered by AMS MathViewer
- by Khashayar Filom PDF
- Conform. Geom. Dyn. 25 (2021), 1-33 Request permission
Abstract:
We set up a real entropy function $h_\Bbb {R}$ on the space $\mathcal {M}’_d$ of Möbius conjugacy classes of real rational maps of degree $d$ by assigning to each class the real entropy of a representative $f\in \Bbb {R}(z)$; namely, the topological entropy of its restriction $f\restriction _{\hat {\Bbb {R}}}$ to the real circle. We prove a rigidity result stating that $h_\Bbb {R}$ is locally constant on the subspace determined by real maps quasi-conformally conjugate to $f$. As examples of this result, we analyze real analytic stable families of hyperbolic and flexible Lattès maps with real coefficients along with numerous families of degree $d$ real maps of real entropy $\log (d)$. The latter discussion moreover entails a complete classification of maps of maximal real entropy.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Araceli Bonifant, Xavier Buff, and John Milnor, Antipode preserving cubic maps: the fjord theorem, Proc. Lond. Math. Soc. (3) 116 (2018), no. 3, 670–728. MR 3772619, DOI 10.1112/plms.12075
- Roger W. Brockett, Some geometric questions in the theory of linear systems, IEEE Trans. Automatic Control AC-21 (1976), no. 4, 449–455. MR 0469386, DOI 10.1109/tac.1976.1101301
- Henk Bruin and Sebastian van Strien, Monotonicity of entropy for real multimodal maps, J. Amer. Math. Soc. 28 (2015), no. 1, 1–61. MR 3264762, DOI 10.1090/S0894-0347-2014-00795-5
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Adrien Douady, Topological entropy of unimodal maps: monotonicity for quadratic polynomials, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 65–87. MR 1351519
- Alexandre Eremenko and Sebastian van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6453–6463. MR 2833563, DOI 10.1090/S0002-9947-2011-05308-0
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787, DOI 10.24033/bsmf.998
- Khashayar Filom. Monotonicity of entropy for real quadratic rational maps. arXiv e-prints, Jan 2019.
- Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, DOI 10.1007/BF02584744
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math. 38 (1981), no. 1-2, 107–115. MR 599481, DOI 10.1007/BF02761854
- Ruben A. Hidalgo and Saul Quispe, On Real and Pseudo-Real Rational Maps, arXiv e-prints, page arXiv:1502.05306, February 2015.
- M. Yu. Lyubich, The measure of maximal entropy of a rational endomorphism of a Riemann sphere, Funktsional. Anal. i Prilozhen. 16 (1982), no. 4, 78–79 (Russian). MR 684138
- N. F. G. Martin, On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms, Bull. London Math. Soc. 15 (1983), no. 4, 343–348. MR 703758, DOI 10.1112/blms/15.4.343
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482, DOI 10.1080/10586458.1993.10504267
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- John Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR 2348953, DOI 10.4171/011-1/1
- Michał Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math., (53):17–51, 1981.
- MichałMisiurewicz, Continuity of entropy revisited, Dynamical systems and applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 495–503. MR 1372979, DOI 10.1142/9789812796417_{0}031
- Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI 10.1007/BF02584743
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- MichałMisiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 6, 573–574 (English, with Russian summary). MR 458501
- M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), no. 1, 45–63. MR 579440, DOI 10.4064/sm-67-1-45-63
- Curtis T. McMullen and Dennis P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), no. 2, 351–395. MR 1620850, DOI 10.1006/aima.1998.1726
- Nikita Miasnikov, Brian Stout, and Phillip Williams, Automorphism loci for the moduli space of rational maps, Acta Arith. 180 (2017), no. 3, 267–296. MR 3709645, DOI 10.4064/aa8548-6-2017
- John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563. MR 970571, DOI 10.1007/BFb0082847
- John Milnor and Charles Tresser, On entropy and monotonicity for real cubic maps, Comm. Math. Phys. 209 (2000), no. 1, 123–178. With an appendix by Adrien Douady and Pierrette Sentenac. MR 1736945, DOI 10.1007/s002200050018
- Chris Preston, What you need to know to knead, Adv. Math. 78 (1989), no. 2, 192–252. MR 1029100, DOI 10.1016/0001-8708(89)90033-9
- Feliks Przytycki, Iterations of rational functions: which hyperbolic components contain polynomials?, Fund. Math. 149 (1996), no. 2, 95–118. MR 1376666, DOI 10.4064/fm-149-2-95-118
- M. Rees, Components of degree two hyperbolic rational maps, Invent. Math. 100 (1990), no. 2, 357–382. MR 1047139, DOI 10.1007/BF01231191
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 240824, DOI 10.2307/2373276
- Joseph H. Silverman, The space of rational maps on $\mathbf P^1$, Duke Math. J. 94 (1998), no. 1, 41–77. MR 1635900, DOI 10.1215/S0012-7094-98-09404-2
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Michael Shub and Dennis Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 285–289. MR 796755, DOI 10.1017/S014338570000290X
- William P. Thurston, Entropy in dimension one, Frontiers in complex dynamics, Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 339–384. MR 3289916
- Jean-Christophe Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical systems and small divisors (Cetraro, 1998) Lecture Notes in Math., vol. 1784, Springer, Berlin, 2002, pp. 125–173. MR 1924912, DOI 10.1007/978-3-540-47928-4_{3}
Additional Information
- Khashayar Filom
- Affiliation: Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109
- MR Author ID: 1190306
- Email: filom@umich.edu
- Received by editor(s): May 4, 2019
- Received by editor(s) in revised form: December 1, 2020
- Published electronically: March 9, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Conform. Geom. Dyn. 25 (2021), 1-33
- MSC (2020): Primary 37B40, 37E10, 37F31; Secondary 37F10, 37P45
- DOI: https://doi.org/10.1090/ecgd/356
- MathSciNet review: 4294970