Real entropy rigidity under quasi-conformal deformations
Author:
Khashayar Filom
Journal:
Conform. Geom. Dyn. 25 (2021), 1-33
MSC (2020):
Primary 37B40, 37E10, 37F31; Secondary 37F10, 37P45
DOI:
https://doi.org/10.1090/ecgd/356
Published electronically:
March 9, 2021
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We set up a real entropy function $h_\Bbb {R}$ on the space $\mathcal {M}’_d$ of Möbius conjugacy classes of real rational maps of degree $d$ by assigning to each class the real entropy of a representative $f\in \Bbb {R}(z)$; namely, the topological entropy of its restriction $f\restriction _{\hat {\Bbb {R}}}$ to the real circle. We prove a rigidity result stating that $h_\Bbb {R}$ is locally constant on the subspace determined by real maps quasi-conformally conjugate to $f$. As examples of this result, we analyze real analytic stable families of hyperbolic and flexible Lattès maps with real coefficients along with numerous families of degree $d$ real maps of real entropy $\log (d)$. The latter discussion moreover entails a complete classification of maps of maximal real entropy.
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787
- Araceli Bonifant, Xavier Buff, and John Milnor, Antipode preserving cubic maps: the fjord theorem, Proc. Lond. Math. Soc. (3) 116 (2018), no. 3, 670–728. MR 3772619, DOI https://doi.org/10.1112/plms.12075
- Roger W. Brockett, Some geometric questions in the theory of linear systems, IEEE Trans. Automatic Control AC-21 (1976), no. 4, 449–455. MR 0469386, DOI https://doi.org/10.1109/tac.1976.1101301
- Henk Bruin and Sebastian van Strien, Monotonicity of entropy for real multimodal maps, J. Amer. Math. Soc. 28 (2015), no. 1, 1–61. MR 3264762, DOI https://doi.org/10.1090/S0894-0347-2014-00795-5
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Adrien Douady, Topological entropy of unimodal maps: monotonicity for quadratic polynomials, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 65–87. MR 1351519
- Alexandre Eremenko and Sebastian van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6453–6463. MR 2833563, DOI https://doi.org/10.1090/S0002-9947-2011-05308-0
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787
- Khashayar Filom. Monotonicity of entropy for real quadratic rational maps. arXiv e-prints, Jan 2019.
- Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, DOI https://doi.org/10.1007/BF02584744
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math. 38 (1981), no. 1-2, 107–115. MR 599481, DOI https://doi.org/10.1007/BF02761854
- Ruben A. Hidalgo and Saul Quispe, On Real and Pseudo-Real Rational Maps, arXiv e-prints, page arXiv:1502.05306, February 2015.
- M. Yu. Lyubich, The measure of maximal entropy of a rational endomorphism of a Riemann sphere, Funktsional. Anal. i Prilozhen. 16 (1982), no. 4, 78–79 (Russian). MR 684138
- N. F. G. Martin, On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms, Bull. London Math. Soc. 15 (1983), no. 4, 343–348. MR 703758, DOI https://doi.org/10.1112/blms/15.4.343
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- John Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR 2348953, DOI https://doi.org/10.4171/011-1/1
- Michał Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math., (53):17–51, 1981.
- Michał Misiurewicz, Continuity of entropy revisited, Dynamical systems and applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 495–503. MR 1372979, DOI https://doi.org/10.1142/9789812796417_0031
- Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43. MR 736567, DOI https://doi.org/10.1007/BF02584743
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343
- Michał Misiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 6, 573–574 (English, with Russian summary). MR 458501
- M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), no. 1, 45–63. MR 579440, DOI https://doi.org/10.4064/sm-67-1-45-63
- Curtis T. McMullen and Dennis P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), no. 2, 351–395. MR 1620850, DOI https://doi.org/10.1006/aima.1998.1726
- Nikita Miasnikov, Brian Stout, and Phillip Williams, Automorphism loci for the moduli space of rational maps, Acta Arith. 180 (2017), no. 3, 267–296. MR 3709645, DOI https://doi.org/10.4064/aa8548-6-2017
- John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563. MR 970571, DOI https://doi.org/10.1007/BFb0082847
- John Milnor and Charles Tresser, On entropy and monotonicity for real cubic maps, Comm. Math. Phys. 209 (2000), no. 1, 123–178. With an appendix by Adrien Douady and Pierrette Sentenac. MR 1736945, DOI https://doi.org/10.1007/s002200050018
- Chris Preston, What you need to know to knead, Adv. Math. 78 (1989), no. 2, 192–252. MR 1029100, DOI https://doi.org/10.1016/0001-8708%2889%2990033-9
- Feliks Przytycki, Iterations of rational functions: which hyperbolic components contain polynomials?, Fund. Math. 149 (1996), no. 2, 95–118. MR 1376666, DOI https://doi.org/10.4064/fm-149-2-95-118
- M. Rees, Components of degree two hyperbolic rational maps, Invent. Math. 100 (1990), no. 2, 357–382. MR 1047139, DOI https://doi.org/10.1007/BF01231191
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 240824, DOI https://doi.org/10.2307/2373276
- Joseph H. Silverman, The space of rational maps on $\mathbf P^1$, Duke Math. J. 94 (1998), no. 1, 41–77. MR 1635900, DOI https://doi.org/10.1215/S0012-7094-98-09404-2
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407
- Michael Shub and Dennis Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 285–289. MR 796755, DOI https://doi.org/10.1017/S014338570000290X
- William P. Thurston, Entropy in dimension one, Frontiers in complex dynamics, Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 339–384. MR 3289916
- Jean-Christophe Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical systems and small divisors (Cetraro, 1998) Lecture Notes in Math., vol. 1784, Springer, Berlin, 2002, pp. 125–173. MR 1924912, DOI https://doi.org/10.1007/978-3-540-47928-4_3
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2020): 37B40, 37E10, 37F31, 37F10, 37P45
Retrieve articles in all journals with MSC (2020): 37B40, 37E10, 37F31, 37F10, 37P45
Additional Information
Khashayar Filom
Affiliation:
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109
MR Author ID:
1190306
Email:
filom@umich.edu
Received by editor(s):
May 4, 2019
Received by editor(s) in revised form:
December 1, 2020
Published electronically:
March 9, 2021
Article copyright:
© Copyright 2021
American Mathematical Society